
The Application of California School

Zheng Tian

May 4th, 2015

1 Introduction

This tutorial is to show how to estimate a multiple regression model and perform linear
hypothesis testing. The application is about the test scores of the California school dis-
tricts. We will use R to replicate the multiple regression with this data set in Chapter 6,
and the hypothesis tests in Chapter 7.

Before running all R codes, we may first load the package AER for loading several particular
packages of regression.

library(AER)

2 Reading the data and basic summary statistics

Let’s first read the data into R and show some basic statistics.

Read the STATA file

Since the data is stored as an STATA file with the extension ".dta", we read the data
using read.dta() in the library of foreign.

library(foreign)
classdata <- read.dta("./data/caschool.dta")

Summary

Upon reading the data, we often use summary() to see some basic statistics. Here we are
not going to show summary statistics of all variables in the data set for the purpose of
saving space, but only to select several variables of interest in Chapters 6 and 7, including
test scores, testscr, student-teacher ratio, str, percentage of English learners, el_pct,
expenditure per pupil, expn_stu, and percentage of students qualifying for free lunch,
mean_pct.

summary(classdata[c("testscr", "str", "el_pct", "expn_stu", "meal_pct")])

testscr str el_pct expn_stu
Min. :605.5 Min. :14.00 Min. : 0.000 Min. :3926

1

1st Qu.:640.0 1st Qu.:18.58 1st Qu.: 1.941 1st Qu.:4906
Median :654.5 Median :19.72 Median : 8.778 Median :5215
Mean :654.2 Mean :19.64 Mean :15.768 Mean :5312
3rd Qu.:666.7 3rd Qu.:20.87 3rd Qu.:22.970 3rd Qu.:5601
Max. :706.8 Max. :25.80 Max. :85.540 Max. :7712

meal_pct
Min. : 0.00
1st Qu.: 23.28
Median : 41.75
Mean : 44.71
3rd Qu.: 66.86
Max. :100.00

3 Plots

Create a matrix of scatterplots using plot

We can create several scatterplots displayed in one graph with a matrix form.

oldpar <- par(mfrow = c(2, 3))

plot(classdata$str, classdata$testscr, col = "red",
main = "Student-teacher ratio vs test scores",
xlab = "Student-teacher ratio", ylab = "Test scores")

plot(classdata$el_pct, classdata$testscr, col = "blue",
main = "English learners vs test scores",
xlab = "Percentage of English learners",
ylab = "Test scores")

plot(classdata$expn_stu, classdata$testscr, col = "green3",
main = "Expenditure per pupil vs test scores",
xlab = "Expenditure per pupil",
ylab = "Test scores")

plot(classdata$meal_pct, classdata$testscr, col = "maroon",
main = "Free lunch vs test scores",
xlab = "Percentage of students with free lunch",
ylab = "Test scores")

plot(classdata$calw_pct, classdata$testscr, col = "darkorange1",
main = "Public assistance vs test scores",
xlab = "Percentage of students in public assistance",
ylab = "Test scores")

par(oldpar)

We can see that the codes above have some parts that are repeated in each plotting
command. So these repetitive work can be concisely written in for a loop. The basic

2

Figure 1: The scatterplots between several variables and test scores

syntax of a for loop is for (var in seq) expr.

xvars <- c("str", "el_pct", "expn_stu", "meal_pct", "calw_pct")
yvars <- c("testscr")

xlabels <- c("Student-teacher ratio", "Percentage of English learners",
"Expenditure per pupil", "Percentage of students with free lunch",
"Percentage of students in the public assistant program")

ylabels <- "Test scores"

titles <- c("student-teacher ratio vs test scores",
"English learners vs test scores",
"Expenditure per pupil vs test scores",
"Free lunch vs test scores vs test scores",
"public assistance vs test scores")

colors <- c("red", "green3", "blue", "maroon", "darkorange1")

op <- par(mfrow = c(2, 3))
for (i in seq(along=xvars)) {

fm <- formula(paste(yvars, "~", xvars[i]))
plot(fm, data = classdata, col = colors[i], main = titles[i],

xlab = xlabels[i], ylab = ylabels)
}
par(op)

3

4 Estimation

Let us first replicate the regression results in Equation (7.19). The unit of the expenditure
per pupil is dollars in the data set but it is in thousand dollars in regression. So we need
to convert the unit in the data set by dividing expn_stu by 1000, which is done directly
in the formula.

The OLS estimation

model.76 <- testscr ~ str + I(expn_stu / 1000) + el_pct

Notice the function I() in the formula. The arithmetic operations, +, *, :, /, and ˆ, have
special meanings in R’s formula. Using the function I() protects the original arithmetic
meanings of these operations from being interpreted in terms of a formula.

The regression estimation can be done with lm() and use summary() afterwards.

res.model.76 <- lm(model.76, data = classdata)
summary(res.model.76)

Call:
lm(formula = model.76, data = classdata)

Residuals:
Min 1Q Median 3Q Max

-51.340 -10.111 0.293 10.318 43.181

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 649.57795 15.20572 42.719 < 2e-16 ***
str -0.28640 0.48052 -0.596 0.55149
I(expn_stu/1000) 3.86790 1.41212 2.739 0.00643 **
el_pct -0.65602 0.03911 -16.776 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 14.35 on 416 degrees of freedom
Multiple R-squared: 0.4366,Adjusted R-squared: 0.4325
F-statistic: 107.5 on 3 and 416 DF, p-value: < 2.2e-16

We can extract some components in the reported results. Use coef() to get the coefficient
estimates, resid() to get the residuals, and fitted() or predict() to get the fitted
values. Alternatively, we can think the lm and summary.lm objects returned by lm() and
summary() are the list object so that we can use the "$" operator to get each component
of the lists. Below are some examples of extracting regression results.

get some components of the results
bhat <- coef(res.model.76)
rsq <- summary(res.model.76)$r.squared
adj.rsq <- summary(res.model.76)$adj.r.squared

4

• Interpretation of the results

As for the coefficients

1. The intercept is 649.5779, which is significant at 1% significance level. It does
not have real meaning in this application, just determining the position of the
sample regression line crossing the vertical axis.

2. The coefficient on str is -0.2864, implying that increasing one more student
per teacher would decrease test scores by 0.2864 unit. However, this estimated
coefficient is not significant at the 10% level.

3. The coefficient on expenditure per pupil is 3.8679, significantly positive at the
5% level, implying that an increase in expenditure per pupil by one thousand
dollars lead to an increase in test scores by 3.8679 unit.

4. The coefficient on the percentage of English learners is -0.656, significantly
negative at the 1% level, implying that an increase in the percentage of English
learners by one percent results in a decrease of test scores by 0.656.

Besides, the R2 and R̄2 are 0.4366 and 0.4325, respectively. Overall, the model
explains about 43% variation of test scores with the included explanatory variables,
which is modest in the sense that a little more than half of the variation of test
scores is not accounted for in the model.

The heteroskedasticity-consistent covariance matrix

Note that standard errors and t statisitcs reported by summary() are the homoskedasticity-
only s.e. and t’s. The heteroskedasticity-robust covariance matrix can be obtained by
vcovHC() in the package of sandwich.

htvarm <- vcovHC(res.model.76, type = "HC1")

238.960380157595 -6.66491920338914 -20.7034584893236 0.0818068203778049
-6.66491920338933 0.232394197515306 0.40034628247013 -0.00244872476838095
-20.7034584893232 0.400346282470112 2.49868335516912 -0.0102366018665727

0.0818068203778026 -0.00244872476838084 -0.0102366018665727 0.00101024993508859

5 Hypothesis tests

Testing a single coefficient

Running summary(res.model.76) can give you t-statistics for all coefficients. However,
as noted above, these t-statistics are the homoskedasticity-only t-statistics. We should use
the heteroskedasticity-robust ones.

homoskedasticity-only
coeftest(res.model.76)

heteroskedasticity-robust, t distribution
cftest.t <- coeftest(res.model.76, vcov = htvarm)

5

cftest.t

heteroskedasticity-robust, normal distribution
cftest.n <- coeftest(res.model.76, vcov = htvarm, df = Inf)
cftest.n

(Intercept)
649.5779

str
-0.2864

str
0.2864
I(expn_stu/1000)

3.8679
I(expn_stu/1000)

3.8679
el_pct
-0.656
el_pct
0.656

[1] 0.4366
[1] 0.4325

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 649.577947 15.205719 42.7193 < 2.2e-16 ***
str -0.286399 0.480523 -0.5960 0.551489
I(expn_stu/1000) 3.867902 1.412122 2.7391 0.006426 **
el_pct -0.656023 0.039106 -16.7755 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 649.577947 15.458343 42.0212 < 2e-16 ***
str -0.286399 0.482073 -0.5941 0.55277
I(expn_stu/1000) 3.867902 1.580722 2.4469 0.01482 *
el_pct -0.656023 0.031784 -20.6397 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 649.577947 15.458343 42.0212 < 2e-16 ***
str -0.286399 0.482073 -0.5941 0.55245

6

I(expn_stu/1000) 3.867902 1.580722 2.4469 0.01441 *
el_pct -0.656023 0.031784 -20.6397 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can see from the results above that

1. whether we use the homoskedasticity-only or heteroskedasticity-robust variance ma-
trices does not affect the coefficient estimates because the calculation of these esti-
mates does not involve the variance matrices.

2. Using the homoskedasticity-only or heteroskedasticity-robust variance matrices yields
different standard errors and t-statistics. Even though the homoskedasticity-only
standard errors of student-teacher ratios seems smaller than the heteroskedasticity-
robust ones, we cannot say that the estimates with the homoskedasticity-only stan-
dard errors are more efficient or precise because we are using a wrong variance matrix
in this case.

3. The p-values from t distribution and standard normal distribution are slightly dif-
ferent, given the corresponding t-statistics are identical in the two cases.

Testing joint hypotheses

• Zero restrictions Let’s first test the joint zero restrictions.

H0 : β1 = 0, β2 = 0 vs. H1 : β1 6= 0 or β2 6= 0

We can use the function linearHypothesis() to test this and any linear hypotheses.

test1 <- linearHypothesis(res.model.76,
c("str = 0", "I(expn_stu/1000) = 0"),
vcov = htvarm, test = "F")

test1
test1.F <- test1$F[2]
test1.p <- test1$"Pr(>F)"[2]

Linear hypothesis test

Hypothesis:
str = 0
I(expn_stu/1000) = 0

Model 1: restricted model
Model 2: testscr ~ str + I(expn_stu/1000) + el_pct

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 418
2 416 2 5.4337 0.004682 **

7

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The F-statistic is 5.4337 with the p-value as 0.0047, which is less than 1%. There-
fore, we can reject the null hypothesis at the 1% level.

Note that the F-statistic is computed with the heteroskedasticity-robust variance
matrix and tested against a F distribution of (2, 416) degree of freedom.

• linear restrictions Let’s test the following restriction,

H0 : β1 + β2 = 0, H1 : β1 + β2 6= 0

We still use linearHypothesis(). But this time we use the argument white.adjust
for which we specify "hc1" and test against a Chi-squared distribution with one
degree of freedom. Therefore, what we get is a Wald statistic.

b1 + b2 = 0
test2 <- linearHypothesis(res.model.76,

c("str + I(expn_stu/1000) = 0"),
white.adjust = "hc1", test = "Chisq")

test2
test2.x <- test2$Chisq[2]
test2.p <- test2$"Pr(>Chisq)"[2]

[1] 5.4337
[1] 0.0047
Linear hypothesis test

Hypothesis:
str + I(expn_stu/1000) = 0

Model 1: restricted model
Model 2: testscr ~ str + I(expn_stu/1000) + el_pct

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq)
1 417
2 416 1 3.6319 0.05668 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The Wald statistic is 3.6319 and the p-value is 0.0567, which is less than 10%
and greater than 5%. That means that the null hypothesis can be rejected at the
10% level but not at the 5% level. This result implies that the effects of hiring
more teachers on test scores could be to some extent similar to increasing more
expenditure per pupil.

The homoskedasticity-only F statistic can be computed without specifying vcov or
white.adjust.

homoskedasticity-only F
test2.hm <- linearHypothesis(res.model.76,

8

c("str + I(expn_stu/1000) = 0"),
test = "F")

test2.hm

[1] 3.6319
[1] 0.0567
Linear hypothesis test

Hypothesis:
str + I(expn_stu/1000) = 0

Model 1: restricted model
Model 2: testscr ~ str + I(expn_stu/1000) + el_pct

Res.Df RSS Df Sum of Sq F Pr(>F)
1 417 86562
2 416 85700 1 862.09 4.1847 0.04142 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The homoskedasticity-only F test points to rejecting the null hypothesis at both 5%
and 10% levels.

6 Control variables and model specifications

In this section we estimate different models for the application of test scores. The vari-
able of interest is student-teacher ratios, STR. In the base specification, we include the
percentage of students who are English learners, PctEL, and the percentage of students
who are eligible for free or subsidized lunch, LchPct, as control variables. An alternative
control variable is the percentage of students who receive public assistance.

model1 <- lm(testscr ~ str, data = classdata)
model2 <- lm(testscr ~ str + el_pct, data = classdata)
model3 <- lm(testscr ~ str + el_pct + meal_pct, data = classdata)
model4 <- lm(testscr ~ str + el_pct + calw_pct, data = classdata)
model5 <- lm(testscr ~ str + el_pct + meal_pct + calw_pct, data = classdata)

We compute the heteroskedasticity-robust standard errors for the coefficients in all model
specifications. The function vcovHC is used to get the heteroskedasticity-consistent covari-
ance matrix (HCCM), in which we set the argument type to be HC1. The heteroskedasticity-
robust standard errors of coefficients are the square roots of the diagonal elements of these
HCCMs.

hccm1 <- vcovHC(model1, type = "HC1")
se1 <- sqrt(diag(hccm1))

hccm2 <- vcovHC(model2, type = "HC1")
se2 <- sqrt(diag(hccm2))

hccm3 <- vcovHC(model3, type = "HC1")

9

se3 <- sqrt(diag(hccm3))

hccm4 <- vcovHC(model4, type = "HC1")
se4 <- sqrt(diag(hccm4))

hccm5 <- vcovHC(model5, type = "HC1")
se5 <- sqrt(diag(hccm5))

Finally, the results for all models are displayed in Table (1) that replicates Table 7.1 in
Chapter 7. To create a table, we use the function stargazer in the stargazer library.

library(stargazer)
stargazer(model1, model2, model3, model4, model5,

title = "Results of regressions of test scores and class size",
covariate.labels = c("student-teacher ratio",

"percent English learners",
"percent eligible for subsidized lunch",
"percent on public assistance"),

dep.var.caption = "average test scores in the district",
se = list(se1, se2, se3, se4, se5), df = FALSE,
font.size = "small",
label = "table:tbl71")

Please cite as:

Hlavac, Marek (2015). stargazer: Well-Formatted Regression and Summary Statistics
Tables. R package version 5.2. http://CRAN.R-project.org/package=stargazer

7 Appendix: R codes

library(AER)

read the data files into R
read the dta file
library(foreign)
classdata <- read.dta("caschool.dta")
head(classdata)
str(classdata)

summary(classdata[, c("testscr", "str", "el_pct", "expn_stu", "meal_pct")])

model.76 <- testscr ~ str + I(expn_stu / 1000) + el_pct
res.model.76 <- lm(model.76, data = classdata)
summary(res.model.76)

scatterplot
oldpar <- par(mfrow = c(2, 2))

plot(classdata$str, classdata$testscr, col = "red",
main = "student-teacher ratio vs test scores",

10

Table 1: Results of regressions of test scores and class size

average test scores in the district

testscr

(1) (2) (3) (4) (5)

student-teacher ratio −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗ −1.014∗∗∗
(0.519) (0.433) (0.270) (0.339) (0.269)

percent English learners −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗ −0.130∗∗∗
(0.031) (0.033) (0.030) (0.036)

percent eligible for subsidized lunch −0.547∗∗∗ −0.529∗∗∗
(0.024) (0.038)

percent on public assistance −0.790∗∗∗ −0.048
(0.068) (0.059)

Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗ 700.392∗∗∗
(10.364) (8.728) (5.568) (6.920) (5.537)

Observations 420 420 420 420 420
R2 0.051 0.426 0.775 0.629 0.775
Adjusted R2 0.049 0.424 0.773 0.626 0.773
Residual Std. Error 18.581 14.464 9.080 11.654 9.084
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗ 357.054∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

11

xlab = "Student-teacher ratio", ylab = "Test scores")

plot(classdata$el_pct, classdata$testscr, col = "blue",
main = "English learners vs test scores",
xlab = "Percentage of English learners",
ylab = "Test scores")

plot(classdata$expn_stu, classdata$testscr, col = "green",
main = "Expenditure per pupil vs test scores",
xlab = "Expenditure per pupil",
ylab = "Test scores")

plot(classdata$meal_pct, classdata$testscr, col = "black",
main = "Free lunch vs test scores",
xlab = "Percentage of students with free lunch",
ylab = "Test scores")

par(oldpar)

do this in a loop
xvars <- c("str", "el_pct", "expn_stu", "meal_pct")
yvars <- c("testscr")

xlabels <- c("Student-teacher ratio", "Percentage of English learners",
"Expenditure per pupil", "Percentage of students with free lunch")

ylabels <- "Test scores"

titles <- c("student-teacher ratio vs test scores",
"English learners vs test scores",
"Expenditure per pupil vs test scores",
"Free lunch vs test scores")

colors <- c("red", "green3", "blue", "black")

op <- par(mfrow = c(2, 2))
for (i in seq(along=xvars)) {

fm <- formula(paste(yvars, "~", xvars[i]))
plot(fm, data = classdata, col = colors[i], main = titles[i],

xlab = xlabels[i], ylab = ylabels)
}
par(op)

use pairs() or scatterplot.matrix() in car
pairs(~ testscr +str + el_pct + expn_stu + meal_pct,
data = classdata)

scatterplot.matrix(~ testscr +str + el_pct + expn_stu + meal_pct,
data = classdata)

12

###
estimation
###

model.76 <- testscr ~ str + I(expn_stu / 1000) + el_pct

res.model.76 <- lm(model.76, data = classdata)
summary(res.model.76)

get some components of the results
bhat <- coef(res.model.76)
rsq <- summary(res.model.76)$r.squared
adj.rsq <- summary(res.model.76)$adj.r.squared

htvarm <- vcovHC(res.model.76, type = "HC1")

application of the FWL theorem
purge the effect of English learners and expenditure per pupil
mod.fwl1 <- lm(testscr ~ el_pct + I(expn_stu/1000), data = classdata)
mod.fwl2 <- lm(str ~ el_pct + I(expn_stu/1000), data = classdata)
mod.fwl3 <- lm(resid(mod.fwl1) ~ resid(mod.fwl2))

test whether the FWL theorm works
first check for the equality of the coefficient on str
if (abs(coef(res.model.76)[2] - coef(mod.fwl3)[2]) < 1.0e-10) {

cat("The coefficient on str is the same.\n")
} else {
cat("The FWL theorem fails? Check your step!\n")

}

second check for the equality of residuals
if (all(abs(resid(mod.fwl3) - resid(res.model.76)) < 1.0e-10)) {

cat("The residuals are all the same.\n")
} else {
cat("The FWL theorem fails? Check your step!\n")

}

###
hypothesis testing
###

single coefficient test
homoskedasticity-only
coeftest(res.model.76)

heteroskedasticity-robust, t distribution

13

cftest.t <- coeftest(res.model.76, vcov = htvarm)

heteroskedasticity-robust, normal distribution
cftest.n <- coeftest(res.model.76, vcov = htvarm, df = Inf)

joint hypothesis
b1 = 0, b2 = 0
test1 <- linearHypothesis(res.model.76,

c("str = 0", "I(expn_stu/1000) = 0"),
vcov = htvarm, test = "F")

test1
test1.F <- test1$F[2]
test1.p <- test1$"Pr(>F)"[2]

b1 + b2 = 0
test2 <- linearHypothesis(res.model.76,

c("str + I(expn_stu/1000) = 0"),
white.adjust = "hc1", test = "Chisq")

test2
test2.x <- test2$Chisq[2]
test2.p <- test2$"Pr(>Chisq)"[2]

homoskedasticity-only F
test2.hm <- linearHypothesis(res.model.76,

c("str + I(expn_stu/1000) = 0"),
test = "Chisq")

test2.hm

###
Control variables and model specifications
###

replicate Table 7.1
model1 <- lm(testscr ~ str, data = classdata)
model2 <- lm(testscr ~ str + el_pct, data = classdata)
model3 <- lm(testscr ~ str + el_pct + meal_pct, data = classdata)
model4 <- lm(testscr ~ str + el_pct + calw_pct, data = classdata)
model5 <- lm(testscr ~ str + el_pct + meal_pct + calw_pct, data = classdata)

hccm1 <- vcovHC(model1, type = "HC1")
se1 <- sqrt(diag(hccm1))

hccm2 <- vcovHC(model2, type = "HC1")
se2 <- sqrt(diag(hccm2))

hccm3 <- vcovHC(model3, type = "HC1")
se3 <- sqrt(diag(hccm3))

hccm4 <- vcovHC(model4, type = "HC1")

14

se4 <- sqrt(diag(hccm4))

hccm5 <- vcovHC(model5, type = "HC1")
se5 <- sqrt(diag(hccm5))

library(stargazer)
stargazer(model1, model2, model3, model4, model5,

title = "Results of regressions of test scores and class size",
covariate.labels = c("student-teacher ratio",

"percent English learners",
"percent eligible for subsidized lunch",
"percent on public assistance"),

dep.var.caption = "average test scores in the district",
se = list(se1, se2, se3, se4, se5), df = FALSE,
font.size = "small",
label = "table:tbl71")

15

	Introduction
	Reading the data and basic summary statistics
	Plots
	Estimation
	Hypothesis tests
	Control variables and model specifications
	Appendix: R codes

