
Lecture 9: Hypothesis Tests and Confidence Intervals in
Multiple Regression

Zheng Tian

1 Introduction

1.1 Overview

This lecture presents the methods for testing the hypotheses concerning the coefficients in
a multiple regression model. Besides the t-statistic that we have learned in Lecture 6, we
introduce a new test statistic, the F-statistic, which is used to test the joint hypotheses
that involve two or more coefficients. We will also learn some basic ideas of assessing
model specification.

1.2 Learning goals

• Know how to test a hypothesis for a single coefficient using the t-statistic.

• Know how to test a joint hypotheses for more than one coefficients using the F-
statistic.

• Understand the underlying ideas of the F-statistic, especially when using the homoskedasticity-
only F-statistic.

1.3 Reading materials

• Chapter 7 and Section 18.3 in Introduction to Econometrics by Stock and Watson.
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2 Hypothesis Tests and Confidence Intervals For a Single
Coefficient

We consider the general multiple regression model as follows

Y = β0ι + β1X1 + β2X2 + · · ·+ βkXk + u (1)

where Y,X1,X2, . . . ,Xk, and u are n × 1 vectors of the dependent variable, regressors,
and errors. β = (β0, β1, β2, . . . , βk)

′ is the (k + 1) × 1 vector of coefficients. And ι is the
n× 1 vector of 1s.

2.1 Standard errors for the OLS estimators

A review on Var(β̂|X)

Recall that in the last lecture, we concluded that the the covariance matrix of the OLS
estimators β̂ can take the following forms:

• The homoskedasticity-only covariance matrix if ui is homoskedastic

Var(β̂|X) = σ2u(X′X)−1 (2)

• The heteroskedasticity-robust covariance matrix if ui is heteroskedastic

Varh(β̂|X) =
(
X′X

)−1
Σ(X′X)−1 (3)

where Σ = X′ΩX, and Ω = Var(u|X).

Also, we know that if the least squares assumptions hold, β̂ has an asymptotic multivariate
normal distribution as

β̂
d−−→ N(β,Σβ̂) (4)

where Σβ̂ = Var(β̂|X) for which use Equation (2) for the homoskedastic case and Equation
(3) for the heteroskedastic case.
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The estimator of Var(β̂|X)

In practice, σ2u and Σ are unknown so that we need to estimate them using their sample
counterparts.

• The estimator of σ2u is

s2u =
1

n− k − 1

n∑
i=1

û2i (5)

Thus, the estimator of the homoskedasticity-only covariance matrix is

V̂ar(β̂) = s2u(X′X)−1 (6)

• The estimator of Σ is Σ̂ given by

Σ̂ =
n

n− k − 1

n∑
i=1

XiX
′
iû

2
i (7)

observation of (k + 1) regressors, including the constant term.

Therefore, the heteroskedasticity-consistent (robust) covariance matrix estimator is

V̂arh(β̂) =
(
X′X

)−1
Σ̂(X′X)−1 (8)

• The estimator of SE(β̂j)

Finally, we can get the standard error of β̂j as the square root of the jth diagonal

element of V̂ar(β̂) for homoskedasticity and V̂arh(β̂) for heteroskedasticity. That is,

– Homoskedasticity-only standard error: SE(β̂j) =

([
V̂ar(β̂)

]
(j,j)

) 1
2

– Heteroskedasticity-robust standard error: SE(β̂j) =

([
V̂arh(β̂)

]
(j,j)

) 1
2

2.2 The t-statistic

With SE(β̂j) at hand, we can test if a single coefficient βj takes on a specific value, βj,0.
A two-sided hypothesis test suffices, that is,

H0 : βj = βj,0 vs. H1 : βj 6= βj,0
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The basic ideas of hypothesis testing for a single coefficient in multiple regression are the
same as in single regression. In this two-sided test, we still use the t-statistic computed as

t =
β̂j − βj,0
SE(β̂j)

Since β̂ has an asymptotic multivariate normal distribution, β̂j has an asymptotic normal
distribution. Under the null hypothesis that the true value of βj is βj,0, the t-statistic has
a asymptotic standard normal distribution in large samples. Therefore the p-value can
still be computed as

p-value = 2Φ(−|tact|)

The null hypothesis can be rejected at the 5% significant level when the p-value is less
than 0.05, or equivalently, if |tact| > 1.96. (Replace the critical value with 1.64 at the 10%
level and 2.58 at the 1% level.)

2.3 Confidence intervals for a single coefficient

The confidence intervals for a single coefficient can be constructed as before using the
t-statistic.

Given large samples, a 95% two-sided confidence interval for the coefficient βj is[
β̂j − 1.96SE(β̂j), β̂j + 1.96SE(β̂j)

]

2.4 Application to test scores and the student-teacher ratio

The regression with two explanatory variables, STR and PctEL

The regression of test has three estimated coefficients, the intercept, the coefficient on
STR and the coefficient on PctEl. The estimated model can be written in the following
format with the standard errors of the three coefficients reporeed in parentheses them.

̂TestScore = 686.0
(8.7)

− 1.10
(0.43)

× STR− 0.650
(0.031)

× PctEl

• We test H0 : β1 = 0 vs H1 : β1 6= 0. The t-statistic for this test can be computed as
t = (−1.10−0)/0.43 = −2.54 < −1.96, and the p-value is 2Φ(−2.54) = 0.011 < 0.05.
Based on either the t-statistic or the p-value, we can reject the null hypothesis at
the 5% level.
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• The confidence interval that contains the true value of β1 with a 95% probability
can be computed as −1.10± 1.96× 0.43 = (−1.95,−0.26).

Adding expenditure per pupil to the equation

Now we add a new explanatory variable in the regression, Expn, that is the expenditure
per pupil in the district in thousands of dollars. Note expenditure includes not only the
spending on new computers, maintenance, and other hardware but also the salaries paid
to teachers. So keep in mind that Expn and STR may be correlated. The new OLS
regression line is

̂TestScore = 649.6
(15.5)

− 0.29
(0.48)

× STR+ 3.87
(1.59)

× Expn− 0.656
(0.032)

× PctEl

Let’s see what’s changed regarding STR after Expn is added.

• The magnitude of the coefficient on STR decreases from 1.10 to 0.29 after Expn is
added.

• The standard error of the coefficient on STR increases from 0.43 to 0.48 after Expn
is added.

• Consequently, in the new model, the t-statistic for the coefficient becomes t =

−0.29/0.48 = −0.60 > −1.96 so that we cannot reject the zero hypothesis at the
5% level. (neither can we at the 10% level).

• How can we interpret such changes?

– The decrease in the magnitude of the coefficient reflects that expenditure per
pupil is an important factor that carry over most influence of student-teacher
ratio on test scores. In other words, holding expenditure per pupil and the
percentage of English-learners constant, reducing class sizes by hiring more
teachers have only small effect on test scores.

– The increase in the standard error reflects that Expn and STR are correlated so
that there is imperfect multicollinearity in this model. In fact, the correlation
coefficient between the two variables is 0.48, which is relatively high.
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3 Tests of joint hypotheses

3.1 The form of joint hypotheses involving more than one coefficients

Rewrite the multiple regression model here

Y = β0ι + β1X1 + β2X2 + · · ·+ βkXk + u (9)

Since β0 to βk can take any value without restrictions, this model is referred to as the full
model or the unrestricted model.

Joint hypothesis: an illustration using two zero restrictions

Suppose we want to test whether the coefficients on the first two regressors are zero. Then
we can set up a joint hypothesis for these two coefficients like the following

H0 : β1 = 0, β2 = 0, vs. H1 : either β1 6= 0 or β2 6= 0 (or both)

• This is a joint hypothesis because the two restrictions β1 = 0 and β2 = 0 must hold
at the same time. So if either of them is invalid, the null hypothesis is rejected as a
whole.

• To test these two restrictions jointly requires that we use a single statistic to test
these restrictions simultaneously.

• The null hypothesis of β1 = 0, β2 = 0 can be considered as two restrictions imposed
on Equation (9). If the null hypothesis is true, we have a restricted model

Y = β0 + β3X3 + β4X4 + · · ·+ βkXk + u (10)

Why not use t-statistic and test individual coefficients one at a time?

What if we test the joint null hypothesis using t-statistics for β1 and β2 separately. That
is, compute the t-statistics t1 for β1 = 0 and t2 for β2 = 0. We call this "one-at-a-time"
testing procedure. For simplicity, we assume t1 and t2 are independent.

We can show that the one-at-a-time procedure will commit a type I error with a probability
more than 5%.

• A type I error happens when the null hypothesis is rejected when it is true. The
probability of committing a type I error is call the size of the test. We want to control
the size to be small, so we set the significance level (the prespecified probability of
a type I error) at 1%, 5%, or 10%.
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• Using the one-at-a-time procedure, at the 5% significance level, we can reject the
null hypothesis of H0 : β1 = 0 and β2 = 0 when either |t1| > 1.96 or |t2| > 1.96

(or both). In other words, the null is not rejected only when both |t1| ≤ 1.96 and
|t2| ≤ 1.96.

• Because the two t-statistics are assumed to be independent, it implies that

Pr(|t1| ≤ 1.96 and |t2| ≤ 1.96) = Pr(|t1| ≤ 1.96)× Pr(|t2| ≤ 1.96) = 0.952 = 90.25%

So the probability of rejecting the null when it is true is 1− 90.25% = 9.75%.

More cases of joint hypothesis

• Joint hypothesis involving one coefficient in each restriction

We can test whether the coefficients take some specific values.

H0 : β1 = β1,0, β2 = β2,0, . . . , βq = βq,0 versus

H1 : at least one restriction does not hold

Suppose that we are testing the joint zero hypotheses (i.e., β1 = β2 = · · · = βq = 0).
This joint hypothesis imposes q zero restrictions on the unrestricted model (Equation
(9)) so that the restricted model is

Y = β0 + βq+1Xq+1 + βq+2Xq+2 + · · ·+ βkXk + u (11)

• Joint hypothesis involving multiple coefficients in each restriction

Besides testing the hypothesis like βj = βj,0, we can also test linear hypotheses
as follows,

H0 : β1 = β2 vs. H1 : β1 6= β2

or
H0 : β1 + β2 = 1 vs. H1 : β1 + β2 6= 1

or more generally,

H0 : β1 + β2 = 0, 2β2 + 4β3 + β4 = 3 vs.

H1 : at least one restriction does not hold

All the null hypotheses above can be thought of being constructed using a linear
function of the coefficients. So we can refer to them as linear hypotheses with regard
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to β.

A general joint hypothesis using matrix notation

We can use a matrix form to represent all linear hypotheses regarding the coefficients in
Equation (9) as follows

H0 : Rβ = r vs. H1 : Rβ 6= r (12)

where R is a q× (k+ 1) matrix with the full row rank, β represent the k+ 1 regressors,
including the intercept, and r is a q × 1 vector of real numbers.

For example

• For H0 : β1 = 0, β2 = 0

R =

(β0 β1 β2 β3 · · · βk

R1 0 1 0 0 · · · 0

R2 0 0 1 0 · · · 0

)
and r =

(
0

0

)

• For H0 : β1 + β2 = 0, 2β2 + 4β3 + β4 = 3, β1 = 2β3 + 1

R =


β0 β1 β2 β3 β4 · · · βk

R1 0 1 1 0 0 · · · 0

R2 0 0 2 4 1 · · · 0

R3 0 1 0 −2 0 · · · 0

 and r =

0

3

1



3.2 The F-statistic

We can compute the F-statistic to test all joint hypotheses shown above. Let’s first review
some properties of F distribution, which is the probability distribution that the F-statistic
follows under the null hypothesis.

The general form of the F-statistic for testing the null hypothesis H0 : Rβ = r

F =
1

q
(Rβ̂ − r)′

[
RV̂ar(β̂)R′

]−1
(Rβ̂ − r) (13)

• β̂ is the estimated coefficients by OLS and V̂ar(β̂) is the estimated covariance matrix.

– For homoskedastic errors, we can compute V̂ar(β̂) as in Equation (6)
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– For heteroskedastic errors, we can compute V̂arh(β̂) as in Equation (8)

– The F-statistic computed as in Equation (13) is a heteroskedasticity-robust
F-statistic.

• The F distribution, the critical value, and the p-value

If the least square assumptions hold, under the null hypothesis, the F-statistic is
asymptotically distributed as the Fq,∞ distribution. That is, F a∼ F (q,∞)

The 5% critical value of the F distribution, cα, must satisfy Pr(F < cα) = 0.95. In
other words, the p-value of the F test can be computed as Pr(F > F act).

Note that we are computing the critical value and the p-value using the F distribution
as if I were doing a one-sided test. This is because the F-statistic takes only positive
values and the F distribution function is defined only in the domain of positive real
numbers.

The F-statistic when q = 2

When we test the null hypothesis of H0 : β1 = 0, β2 = 0 with the restricted model in
Equation (10), the F-statistic for this test is

F =
1

2

t21 + t22 − 2ρ̂t1,t2t1t2
1− ρ̂2t1,t2

(14)

Equation (14) is mostly for illustration purpose, which shows how to use t1 and t2 in a
joint hypothesis test.

• For simplicity, suppose t1 and t2 are independent so that ρ̂t1,t2 = 0. Then F =
1
2(t21 + t22).

• Under the null hypothesis, both t1 and t2 have asymptotic standard normal distri-
bution. Then t21 + t22 ∼ χ2(2).

• It follows that F = 1
2(t21 + t22) ∼ F (2,∞).

• The discussion about the F-statistic in Equation (14) will become complicated when
ρ̂t1,t2 6= 0.

3.3 The homoskedasticity-only F-statistic

When the regressor errors are homoskedastic, i.e., assuming that Var(ui|Xi) = σ2u for
i = 1, . . . , n, then we can compute the homoskedasticity-only F-statistic that bears
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more meaningful implications for the F tests.

Suppose we test the restricted model with q restrictions in Equation (11) versus the
unrestricted model in Equation (9). That is,

H0 : Y = β0 + βq+1Xq+1 + βq+2Xq+2 + · · ·+ βkXk + u (the restricted model)

H1 : Y = β0 + β1X1 + β2X2 + · · ·+ βkXk + u (the unrestricted model)

Then the homoskedasticity-only F-statistic can be computed as

F =
(RSSR− USSR)/q

USSR/(n− k − 1)
(15)

where RSSR is the sum of squared residuals of the restricted model and USSR is the
sum of squared residuals of the unrestricted model.

Since both restricted and unrestricted models have the same Y, TSS is the same for both
models. Therefore, dividing the numerator and the denominator in Equation (15) by TSS,
we obtain another expression of the homoskedasticity-only F-statistic in terms of R2 as

F =
(R2

unrestrict −R2
restrict)/q

(1−R2
unrestrict)/(n− k − 1)

(16)

Suppose that all least square assumptions and the homoskedasticity assumption hold, then
we have

F ∼ F (q, n− k − 1)

So we can get the p-value and the critical value from the distribution F (q, n− k − 1).

We can understand the meaning of the homoskedasticity-only F-statistic by the following
reasoning line

1. The unrestricted model have more regressors than the restricted model, on which
the coefficients could be non-zero.

2. By the properties of the OLS estimation, SSR will decrease whenever an additional
regressor is included in the model and the coefficient on that new regressor is not
zero.

3. In other words, given the same sample, R2 in the unrestricted model will increase
when a new regressor is added with a nonzero coefficient.

4. That means RSSR ≥ USSR and R2
unrestrict ≥ R2

restrict are always true.

5. However, suppose that the null hypothesis is true. That is, the true model is really
the restricted one.
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6. Then, the explanatory power of the additional regressors in the unrestricted model
should be very small.

7. That means that USSR cannot be too much smaller than RSSR, or R2
unrestrict

cannot be too much larger than R2
restrict if the null hypothesis is true.

8. That means F should not be a large positive number under the null hypothesis.

9. If we compute an F-statistic that is large enough compared with a critical value at
some significance level, then we can reject the null hypothesis.

3.4 Transformation of joint hypothesis testing to single hypothesis test-
ing

For some simple joint hypotheses, we can transform the model so that tesing joint hy-
potheses is converted to testing a single hypothesis. Consider the following model

Y = β0 + β1X1 + β2X2 + u

And the null hypothesis is
H0 : β1 = β2

Then we can rewrite the model as

Y = β0 + (β1 − β2)X1 + β2(X1 + X2) + u

Define γ = β1 − β2 and W = X1 + X2. Then the original model becomes

Y = β0 + γX1 + β2W + u

Thus, instead of testing β1 − β2 = 0, we test H0 : γ = 0 using the t-statistic computed
from the transformed model.

3.5 Application to test scores and the student-teacher ratio

We rewrite the estimated regression model of test scores against the student-teacher ratio,
expenditures per pupil, and the percentage of English learners below.

̂TestScore = 649.6
(15.5)

− 0.29
(0.48)

× STR+ 3.87
(1.59)

× Expn− 0.656
(0.032)

× PctEl, R2 = 0.4366
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The null hypothesis is H0 : β1 = 0, and β2 = 0, and the alternative hypothesis is H1 :

β1 6= 0 or β2 6= 0.

• The heteroskedasticity-robust F statistic is 5.43, calculated by the computer program
using the heteroskedasticity-consistent covariance matrix. The critical value of the
F2,∞ distribution at the 5% significance level is 3.00, and 4.61 at the 1% level.
Since F = 5.43 > 4.61, we can reject the null hypothesis saying that neither the
student-teacher ratio nor expenditures per pupil have an effect on test scores, holding
constant the percentage of English learners.

• The homoskedasticity-only F statistic. To compute the homoskedasticity-only F
statistic, we need to estimate the restricted model by OLS, which yields

̂TestScore = 664.7
(1.0)

− 0.671
(0.032)

× PctEl, R2 = 0.4149

Now we know that the unrestricted R2
unrestricted is 0.4366, the restricted R2

restricted is
0.4149, the number of restrictions q = 2, the number of observations n = 420, and the
number of coefficients in the unrestricted model k = 3. Then, the homoskedasticity-
only F statistic is computed as

F =
(0.4366− 0.4149)/2

(1− 0.4366)/(420− 3− 1)
= 8.01

Because 8.01 exceeds the 1% critical value of 4.61 from the F2,∞ distribution, the
null hypothesis is rejected.

4 Confidence Sets for multiple coefficients

4.1 Definition

A 95% confidence set for two or more coefficients is

• a set that contains the true population values of these coefficients in 95% of randomly
drawn samples.

• Equivalently, the set of coefficient values that cannot be rejected at the 5% signifi-
cance level.

4.2 How to construct a confidence set

Suppose that we construct the confidence set for β1 = β1,0, β2 = β2,0.
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• Let Fβ1,β2 be the heteroskedasticity-robust F-statistic computed according to Equa-
tion (13). If the homoskedasticity assumption holds, then F-statistic can be com-
puted based on Equation (15).

• A 95% confidence set = {β1, β2 : Fβ1,β2 < cF }, where cF is the 5% critical value of
the F (2,∞) distribution, which is close to 3 in this case.

• This set has coverage rate 95% because the test on which it is based has the size of
5%.

• Therefore the confidence set which is constructed as the non-rejected values contains
the true value 95% of the time.

4.3 The confidence set based on the F-statistic is an ellipse

According to Equation (14), the confidence set for β1, and β2 is{
β1, β2 : F =

1

2

t21 + t22 − 2ρ̂t1,t2t1t2
1− ρ̂2t1,t2

≤ 3

}

Plugging the formula of t1 and t2, the F-statistic becomes

F =

( β̂1 − β1,0
SE(β̂1)

)2

+

(
β̂2 − β2,0
SE(β̂2)

)2

+ 2ρ̂t1,t2

(
β̂1 − β1,0
SE(β̂1)

)(
β̂2 − β2,0
SE(β̂2)

) ≤ 3

which is an ellipse containing the pairs of values of β1 and β2 that cannot be rejected using
the F-statistic at the 5% significance level. See Figure 1.

Figure 1: 95% Confidence Set for Coefficients on STR and Expn
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5 Model specification for multiple regression

5.1 Omitted variable bias in multiple regression

Omitted variable bias is the bias in the OLS estimator that arises when one or more
included regressors are correlated with an omitted variable.

For omitted variable bias to arise, two things must be true:

1. At least one of the included regressors must be correlated with the omitted variable.

2. The omitted variable must be a determinant of the dependent variable, Y .

With omitted variable bias, the least square assumption E(u|X) = 0 does not hold any
more. The OLS estimator β̂ is biased however large the sample size is.

5.2 The problem of the assumption of E(u|X) = 0 and control variables

The assumption of E(u|X) = 0 ensures that the estimated coefficients on all included
regressors are unbiased and consistent. However, this assumption is too strong to be
completely realized in practice. So we have to make a compromise between the ideal
situation and reality.

What we can do is that we divide all regressors into two groups:

• One group consists of regressors whose causal effects on Y are our research interest
so that we want unbiased estimates of these coefficients.

• Another group consists of regressors whose causal effects on Y are not our focus.
But if we omit them, we would risk making omitted variable bias in the coefficients
that we do care.

The regressors in the latter group are called control variable. Moreover, we use an
assumption that is weaker than the assumption of E(u|X) = 0 to ensure that the estimated
coefficients on the regressors in the first groups are unbiased, maintaining the causal
implication that we want.

5.3 The role of control variables in multiple regression

Definition

A control variable W is a variable that is correlated with, and controls for, an omitted
causal factor in the regression of Y on X, but which itself does not necessarily have a
causal effect on Y.
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A control variable is not the object of interest in the study; rather it is a regressor included
to hold constant factors that, if neglected, could lead to the estimated causal effect of
interest to suffer from omitted variable bias.

The test score example

TestScore = 700.2
(5.6)

− 1.00
(0.27)

STR− 0.122
(0.033)

PctEL− 0.547
(0.024)

LchPct, R̄2 = 0.773

Where PctEL = percent English learners in the school district, LchPct = percent of
students receiving a free/subsidized lunch.

• Which variable is the variable of interest? STR

• Which variables are control variables? Do they have causal implications? What do
they control for?

– PctEL probably has a direct causal effect (school is tougher if you are learning
English!). But it is also a control variable: immigrant communities tend to be
less affluent and often have fewer outside learning opportunities, and PctEL is
correlated with those omitted causal variables. PctEL is both a possible causal
variable and a control variable.

– LchPct might have a causal effect (eating lunch helps learning); it is also cor-
related with and controls for income-related outside learning opportunities.
LchPct is both a possible causal variable and a control variable.

What makes an effective control variable?

What variables can we choose to include in regression as effective control variables? The
followings are three interchangeable statements about what makes an effective control
variable:

• An effective control variable is one which, when included in the regression, makes
the error term uncorrelated with the variable of interest.

• Holding constant the control variable(s), the variable of interest is “as if” randomly
assigned.

• Among individuals (entities) with the same value of the control variable(s), the
variable of interest is uncorrelated with the omitted determinants of Y .

Control variables need not be causal, and their coefficients generally do not have a causal
interpretation.
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• Does the coefficient on LchPct have a causal interpretation? If so, then we should be
able to boost test scores (by a lot! Do the math!) by simply eliminating the school
lunch program, so that LchPct = 0. But it makes nonsense!

5.4 Conditional mean independence

We need a mathematical statement of what makes an effective control variable, which is
conditional mean independence.

Conditional mean independence says that given the control variable(s), the expectation of
ui doesn’t depend on the variable of interest.

Let Xi denote the variable of interest and Wi denote the control variable(s). W is an
effective control variable if conditional mean independence holds:

E(ui|Xi,Wi) = E(ui|Wi)

If W is an effective control variable, then we can use conditional mean independence to
substitute the first least square assumption requiring E(ui|Xi,Wi) = 0.

Consider the regression model

Y = β0 + β1X + β2W + u

whereX is the variable of interest andW is an effective control variable so that conditional
mean independence holds. In addition, suppose that the other least square assumptions
hold. Then, it has the following tow implications: (1) β1 has a causal interpretation and
(2) β̂1 is unbiased and β̂2 is biased. Let’s see the reasons.

β1 has a causal interpretation.

It means that controlling for W , the causal effect of X on Y is measured by β1. That is,
we can still interpret β1 = ∆Y/∆X, holding other things constant by controlling for W .

The expected change in Y resulting from a change in X, holding W constant, is:

E(Y |X = x+ ∆x,W = w)− E(Y |X = x,W = w)

= β0 + β1(x+ ∆x) + β2w + E(u|X = x+ ∆x,W = w)

− β0 + β1x+ β2w + E(u|X = x,W = w)

= β1∆x+ [E(u|W = w)− E(u|W = w)]

= β1∆x
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In the second equality, we use conditional mean independence E(u|X = x + ∆x,W =

w) = E(u|X = x,W = w) = E(u|W = w).

β̂1 is unbiased and β̂2 is biased

For convenience, suppose that E(u|W ) = γ0 + γ1W . Thus, under conditional mean
independence, we have

E(u|X,W ) = E(u|W ) = γ0 + γ1W

Let v = u− E(u|W ) so that

E(v|X,W ) = E(u|X,W )− E(u|W ) = 0

Then, it follows that
u = E(u|X,W ) + v = γ0 + γ1W + v .

Then, the original model Y = β0 + β1X + β2W + u becomes

Y = β0 + β1X + β2W + γ0 + γ1W + v

= (β0 + γ0) + β1X + (β2 + γ1)W + v

= δ0 + β1X + δ2W + v

where δ0 = β0 + γ0 and δ2 = β2 + γ2.

For the new model Y = δ0 + β1X + δ2W + v, we can conclude as follows.

• The new model satisfy E(v|X,W ) = 0 so that the OLS estimator of δ0, β1, and δ2
are unbiased.

• The estimated coefficients in the original model are actually β̂1 and δ̂2, which we
know that E(β̂1) = β1 and E(β̂2) = δ2 6= β2 in general.

5.5 Model specification in theory and in practice

In theory, when data are available on the omitted variable, the solution to omitted variable
bias is to include the omitted variable in the regression. In practice, however, deciding
whether to include a particular variable can be difficult and requires judgment.

The following steps are advocated to set up a regression model:

1. a base set of regressors should be chosen using a combination of expert judgment,
economic theory, and knowledge of how data were collected. The regression using
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this base set of regressors is referred to as a base specification. This step involves
the following consideration:

(a) identifying the variable of interest.

(b) thinking of the omitted causal effects that could result in omitted variable bias.

(c) including those omitted causal effects if you can find relevant variables. If you
can’t, include variables that are correlated with them as control variables. The
control variables are effective if the conditional mean independence assumption
plausibly holds.

2. Specify a range of plausible alternative model specifications, which include ad-
ditional candidate variables.

(a) If the estimates of the coefficients of interest are numerically similar across the
alternative specifications, then this provides evidence that the estimates from
your base specification are reliable.

(b) If the estimates of the coefficients of interest change substantially across specifi-
cations, this often provides evidence that the original specification had omitted
variable bias.

3. Use test statistics to judge a model specification

(a) Use R2 and R̄2 to see the overall goodness of fit of a model specification.
Caution: a high R2 or R̄2 does not mean that you have eliminated omitted
variable bias. Neither does a high R2 or R̄2 mean that the included variables
and the model as a whole are statistically significant.

(b) Use t-statistic to check the significance of individual coefficients, and use F-
statistic to check the overall significance of the model as a whole. That is, use
F test for

H0 : β1 = β2 = · · · = βk = 0

6 Analysis of the test score data set

The complete regression results are formally reported in Table 7.1.
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