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The Multiple Regression Model

The problem of a simple linear regression

The simple linear regression model

TestScore = β0 + β1 × STR + OtherFactors

Question: Is this model adequate to characterize the determination of test scores?

It ignores many important factors, simply lumped into OtherFactors, the error
term, ui , in the regression model.
What are possible other important factors?

School district characteristics: average income level, demographic components
School characteristics: teachers’ quality, school buildings,
Student characteristics: family economic conditions, individual ability
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The Multiple Regression Model

Percentage of English learners as an example

The percentage of English learners in a school district could be an relevant and
important determinant of test scores, which is omitted in the simple regression
model.

How can it affect the estimate of the effect of student-teacher ratios on test score?
High percentage of English learners ⇒ large student-teacher ratios.
High percentage of English learners ⇒ lower test scores.
The estimated effect of student-teacher ratios may in fact include the
influence from the high percentage of English learners.
In the terminology of statistics, the magnitude of the coefficient on
student-teacher ratio is overestimated.
The problem is called the omitted variable bias
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The Multiple Regression Model

Solutions to the problem of ignoring important factors

We can include these important but ignored variables, like the percentage of
English learners (PctEL), in the regression model.

TestScorei = β0 + β1STRi + β2PctELi + OtherFactorsi

A regression model with more than one regressors is a multiple regression model.
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The Multiple Regression Model

A multiple regression model

The general form of a multiple regression model is

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + ui , i = 1, . . . , n (1)

where

Yi is the ith observation on the dependent variable;
X1i ,X2i , . . . ,Xki are the ith observation on each of the k regressors; and
ui is the error term associated with the ith observation, representing all other
factors that are not included in the model.
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The Multiple Regression Model

The components in a multiple regression model

The population regression line (or population regression function)

E (Yi |X1i , . . . ,Xki ) = β0 + β1X1i + · · ·+ βkXki

β1, . . . , βk are the coefficients on the corresponding Xi , i = 1, . . . , k .
β0 is the intercept, which can also be thought of the coefficient on a
regressor X0 that equals 1 for all observations.

Including X0, there are k + 1 regressors in the multiple regression model.
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The Multiple Regression Model

The interpretation of βi : Holding other things constant

Y = β0 + β1X1 + · · ·+ βkXk + u (2)

The coefficient βi on the regressor Xi for i = 1, . . . , k measures the effect on Y of
a unit change in Xi , holding other X constant.

An example

Suppose we have two regressors X1 and X2 and we are interested in the effect of
X1 on Y . We can let X1 change by ∆X1 and holding X2 constant. Then, the new
value of Y is

Y + ∆Y = β0 + β1(X1 + ∆X1) + β2X2

Subtracting Y = β0 + β1X1 + β2X2, we have ∆Y = β1∆X1. That is

β1 =
∆Y

∆X
, holding X2 constant
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The Multiple Regression Model

The partial effect

If Y and Xi for i = 1, . . . , k are continuous and differentiable variables, βi is as
simply as the partial derivative of Y with respect to Xi . That is

βi =
∂Y

∂Xi

By the definition of a partial derivative, βi is just the effect of a marginal change
in Xi on Y holding other X constant.
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The Multiple Regression Model

Look at the data in terms of vectors and matrix

Figure: The California data set in Excel

Each row represents an observation of all variables pertaining to a school
district.
Each column represents a variable with all observations.
The whole dataset can be seen as a matrix.
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The Multiple Regression Model

Define variables in matrix notation
Write all the variables in vector and matrix notation

Y =


Y1
Y2
...
Yn

 ,

︸ ︷︷ ︸
Dependent variable

X =


1 X11 · · · Xk1
1 X12 · · · Xk2
...

...
. . .

...
1 X1n · · · Xkn

 ,

︸ ︷︷ ︸
Independent variables

u =


u1
u2
...
un

 ,

︸ ︷︷ ︸
Errors

β =


β0
β1
...
βk


︸ ︷︷ ︸
Coefficients

Write the multiple regression model in matrix notation

Y = Xβ + u (3)

Why do we use matrix notation

Concise, easy to derive properties; big-picture perspective.
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The Multiple Regression Model

Two other ways to write the regression model

Write X in row vectors

The ith row in X is a (k + 1)× 1 vector

xi =


1
X1i
...

Xki

 . Thus, its transpose is x′i = (1,X1i , · · · ,Xki )

We can write the regression model (Equation 3) as

Yi = x′iβ + ui , i = 1, . . . , n (4)
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The Multiple Regression Model

Two other ways to write the regression model (cont’d)

Write X in vector vectors

The ith column in X is a n × 1 vector

X i =

Xi1
...

Xin

 . The first column is ι =

1
...
1

 . Thus X = (ι,X 1, . . . ,X k)

The regression model (Equation 3) can be re-written as

Y = β0ι + β1X 1 + · · ·+ βkX k + u (5)
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The OLS Estimator in Multiple Regression

The minimization problem and the OLS estimator

The core idea of the OLS estimator for a multiple regression model remains
the same as in a simple regression model: minimizing the sum of the squared
residuals.
Let b = [b0, b1, . . . , bk ]′ be some estimators of β = [β0, β1, . . . , βk ]′.
The predicted Yi is

Ŷi = b0 + b1X1i + · · ·+ bkXki = x′ib, i = 1, . . . ,

or in matrix notation Ŷ = Xb

The residuals, i.e., the prediction mistakes, with b is

ûi = Yi − b0 − b1X1i − · · · − bkXki = Yi − x′ib
or in matrix notation û = Y − Xb

Zheng Tian Lecture 8: Linear Regression with Multiple Regressors 14 / 63



The OLS Estimator in Multiple Regression

The minimization problem and the OLS estimator (cont’d)

The sum of the squared residuals is

S(b) = S(b0, b1, . . . , bk) =
n∑

i=1

(Yi − b0 − b1X1i − · · · − bkXki )
2

=
n∑

i=1

(Yi − x′ib)2 = (Y − Xb)′(Y − Xb)

= û′û =
n∑

i=1

û2i

The OLS estimator is the solution to the following minimization problem:

min
b

S(b) = û′û (6)
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The OLS Estimator in Multiple Regression

The OLS estimator of β as a solution to the minimization
problem

Solve the minimization problem:

F.O.C.:
∂S(b)

∂bj
= 0, for j = 0, 1, . . . , k

The derivative of S(b0, . . . , bk) with respect to bj is

∂

∂bj

n∑
i=1

(Yi − b0 − b1X1i − · · · − bkXki )
2 =

−2
n∑

i=1

Xji (Yi − b0 − b1X1i − · · · − bkXki ) = 0

There are k + 1 such equations. Solving the system of equations, we obtain
the OLS estimator β̂ = (β̂0, . . . , β̂k)′.
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The OLS Estimator in Multiple Regression

The OLS estimator in matrix notation

Let β̂ denote the OLS estimator. Then the expression of β̂ is given by

β̂ = (X′X)−1X′Y (7)

Some useful results of matrix calculus

To prove Equation (7), we need to use some results of matrix calculus.

∂a′x
∂x

= a,
∂x′a
∂x

= a, and
∂x′Ax
∂x

= (A + A′)x (8)

when A is symmetric, then (∂x′Ax)/(∂x) = 2Ax
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The OLS Estimator in Multiple Regression

The proof

Proof of Equation (7).

S(b) = û′û = Y′Y − b′X′Y − Y′Xb− b′X′Xb

The first order conditions for minimizing S(b) with respect to b is

−2X′Y − 2X′Xb = 0
X′Xb = X′Y (9)

Then
b = (X′X)−1X′Y

given that X′X is invertible.

Note that Equation (9) represents a system of equations with k + 1 equations.
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The OLS Estimator in Multiple Regression

The OLS estimator of β̂1 in a simple regression model

The simple linear regression model written in matrix notation is

Y = β0ι + β1X1 + u = Xβ + u

where

Y =

Y1
...
Yn

 , X =
(
ι X1

)
=

1 X11
...

...
1 X1n

 , u =

u1
...
un

 , β =

(
β0
β1

)

Zheng Tian Lecture 8: Linear Regression with Multiple Regressors 19 / 63



The OLS estimator of β̂1 in a simple regression model
(cont’d)

Let’s get the components in Equation (7) step by step.

Step (1): compute (X′X)

X′X =

(
ι′

X′1

)(
ι X1

)
=

(
1 · · · 1
X11 · · · X1n

)1 X11
...

...
1 X1n


=

(
ι′ι ι′X1
X′1ι X′1X1

)
=

(
n

∑n
i=1 X1i∑n

i=1 X1i
∑n

i=1 X
2
1i

)



The OLS estimator of β̂1 in a simple regression model
(cont’d)

Step (2): compute (X′X)−1

The inverse of a 2× 2 matrix(
a11 a12
a21 a22

)−1
=

1
a11a22 − a12a21

(
a22 −a12
−a21 a11

)

The inverse of X′X

(X′X)
−1

=
1

n
∑n

i=1 X
2
1i − (

∑n
i=1 X1i )2

( ∑n
i=1 X

2
1i −

∑n
i=1 X1i

−
∑n

i=1 X1i n

)



The OLS estimator of β̂1 in a simple regression model
(cont’d)

Step (3): compute X′Y

X′Y =

(
ι′

X′1

)
Y =

(
1 · · · 1
X11 · · · X1n

)Y1
...
Yn

 =

(
ι′Y
X′1Y

)
=

( ∑n
i=1 Yi∑n

i=1 X1iYi

)

Step (4): compute β̂ = (X′X)−1X′Y

(
β̂0
β̂1

)
=

1
n
∑n

i=1 X
2
1i − (

∑n
i=1 X1i )2

( ∑n
i=1 X

2
1i −

∑n
i=1 X1i

−
∑n

i=1 X1i n

)( ∑n
i=1 Yi∑n

i=1 X1iYi

)
=

1
n
∑n

i=1 X
2
1i − (

∑n
i=1 X1i )2

(∑n
i=1 X

2
1i
∑n

i=1 Yi −
∑n

i=1 X1i
∑n

i=1 X1iYi

−
∑n

i=1 X1i
∑n

i=1 Yi + n
∑n

i=1 X1iYi

)



The OLS estimator of β̂1 in a simple regression model
(cont’d)

The formula of β̂1

β̂1 =
n
∑n

i=1 X1iYi −
∑n

i=1 X1i
∑n

i=1 Yi

n
∑n

i=1 X
2
1i − (

∑n
i=1 X1i )2

=

∑n
i=1(X1i − X̄1)(Yi − Ȳ )∑n

i=1(X1i − X̄1)2

The formula of β̂0

β̂0 =

∑n
i=1 X

2
1i
∑n

i=1 Yi −
∑n

i=1 X1i
∑n

i=1 X1iYi

n
∑n

i=1 X
2
1i − (

∑n
i=1 X1i )2

= Ȳ − β̂1X̄1



Application to Test Scores and the Student-Teacher Ratio
The simple regression compared with the multiple regression

The estimated simple linear regression model is

̂TestScore = 698.9− 2.28× STR

The estimated multiple linear regression model is

̂TestScore = 686.0− 1.10× STR − 0.65× PctEL

Explanations

The interpretation of the new estimated coefficient on STR is, holding the
percentage of English learners constant, a unit decrease in STR is estimated
to increase test scores by 1.10 points.
We can also interpret the estimated coefficient on PctEL as, holding STR
constant, one unit decrease in PctEL increases test scores by 0.65 point.
The magnitude of the negative effect of STR on test scores in the multiple
regression is approximately half as large as when STR is the only regressor.



The OLS Estimator in Multiple Regression

Warm-up exercises
1) In the multiple regression model you estimate the effect on Yi of a unit change
in one of the Xi while holding all other regressors constant. This

A) makes little sense, because in the real world all other variables
change.

B) corresponds to the economic principle of mutatis mutandis.
C) leaves the formula for the coefficient in the single explanatory

variable case unaffected.
D) corresponds to taking a partial derivative in mathematics.

Answer: D

2) The multiple regression model can be written in matrix form as follows:

A) Y = Xβ
B) Y = X + U
C) Y = βX + U
D) Y = Xβ + U

Answer: D

3) Minimization of
∑n

i=1(Yi − b0 − b1X1i − · · · − bkXki )
2 results in

A) X′Y = Xβ̂
B) Xβ̂ = 0k+1
C) X′(Y − Xβ̂) = 0k+1
D) Rβ = r

Answer: C
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Measures of Fit in Multiple Regression

The standard errors of the regression (SER)

The standard error of regression (SER) estimates the standard deviation of
the error term u. In multiple regression, the SER is

SER = sû, where s2û =

∑n
i=1 û

2
i

n − k − 1
=

SSR

n − k − 1
(10)

SSR is divided by (n − k − 1) because there are n observations and (k + 1)
coefficients to be estimated.
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Measures of Fit in Multiple Regression

R2

TSS, ESS, and SSR

The total sum of squares (TSS): TSS =
∑n

i=1(Yi − Ȳ )2

The explained sum of squares (ESS): ESS =
∑n

i=1(Ŷi − Ȳ )2

The sum of squared residuals (SSR): SSR =
∑n

i=1 û
2
i

The equality still holds in multiple regression

TSS = ESS + SSR

Define R2 as before

R2 =
ESS

TSS
= 1− SSR

TSS
(11)
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Measures of Fit in Multiple Regression

Limitations of R2

R2 is valid only if a regression model is estimated using the OLS since
otherwise it would not be true that TSS = ESS + SSR.
R2 defined in the form of the deviation from the mean is only valid when a
constant term is included in regression.
In a regression model without an intercept, use the uncentered version of R2,
which is also defined as

R2
u =

EES

TSS
= 1− SSR

TSS
(12)

where
TSS =

∑n
i=1 Y

2
i , ESS =

∑2
i=1 Ŷ

2
i , and SSR =

∑n
i=1 û

2
i

Note that in a regression without a constant term, the equality
TSS = ESS + SSR holds.
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Measures of Fit in Multiple Regression

Limitation of R2 (cont’d)

R2 increases whenever an additional regressor is included in a multiple
regression model, unless the estimated coefficient on the added regressor is
exactly zero.

Consider two regression models

Y = β0 + β1X1 + u (13)
Y = β0 + β1X1 + β2X2 + u (14)

Which model should have smaller SSR?
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Measures of Fit in Multiple Regression

Limitation of R2 (cont’d)

Equation (14) have the smaller SSR than equation (13). Why?

An additional X2 ⇒ More in the total variation of Y is explained ⇒ Smaller
SSR (unless β̂2 = 0)

Since both models use the same Y, TSS must be the same. Because SSR
decreases as more regressors are added, R2 increases.
In mathematics, this is essentially because the OLS estimation for equation
(13) solves a constrained minimization problem, while that for equation (14)
solves an unconstrained minimization problem.
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Measures of Fit in Multiple Regression

The adjusted R2

The adjusted R2 is, or R̄2, is a modified version of R2.
The R̄2 improves R2 in the sense that it does not necessarily increase when a
new regressor is added. The R̄2 is

R̄2 = 1− SSR/(n − k − 1)

TSS/(n − 1)
= 1− n − 1

n − k − 1
SSR

TSS
= 1− s2u

s2Y
(15)

The adjustment is made by dividing SSR and TSS by their corresponding
degrees of freedom, which is n − k − 1 and n − 1 respectively.

s2u is the sample variance of the OLS residuals, and s2Y is the sample variance
of Y .
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Measures of Fit in Multiple Regression

Properties of R̄2

The definition of the R̄2 in Equation (15) is valid only when a constant term
is included in the regression model.

Since n−1
n−k−1 > 1, then it is always true that the R̄2 < R2.

k ↑⇒ SSR
TSS ↓, but k ↑⇒

n−1
n−k−1 ↑.

Whether R̄2 increases or decreases depends on which of these effects is
stronger.

The R̄2 can be negative. This happens when the regressors, taken together,
reduce the sum of squared residuals by such a small amount that his
reduction fails to offset the factor n−1

n−k−1 .
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Measures of Fit in Multiple Regression

The usefulness of the R2 and R̄2

Both R2 and R̄2 are valid when the regression model is estimated by the OLS
estimators. R2 computed with estimators other than the OLS ones is usually
called pseudo R2.

Their importance as measures of fit cannot be overstated. We cannot heavily
reply on R2 or R̄2 to judge whether some regressors should be included in the
model or not.
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The Frisch-Waugh-Lovell Theorem

The grouped regressors

Consider a multiple regression model

Yi = β0 + β1X1i + · · ·+ βk1Xk1,i︸ ︷︷ ︸
k1+1 regressors

+βk1+1Xk1+1,i + · · ·βkXk︸ ︷︷ ︸
k2 regressors

+ui (16)

In matrix notation, we write

Y = X1β1 + X2β2 + u (17)

where

X1 is an n × (k1 + 1) matrix composed of the intercept and the first k1 + 1
regressors in Equation (16),
X2 is an n × k2 matrix composed of the rest k2 regressors.
β1 = (β0, β1, . . . , βk1)′ and β2 = (βk1+1, . . . , βk)′.
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The Frisch-Waugh-Lovell Theorem

Two estimation strategies

Suppose that we are interested in β2 but not much in β1 in Equation (17). How
can we estimate β2?

The first strategy: the standard OLS estimation

We can obtain the OLS estimation of β2 with Equation (7), i.e.,
β̂ = (X′X)−1X′Y. β̂2 is a vector consisting of the last k2 elements in β̂.
In matrix notation, we can get β̂2 from the following equation(

β̂1
β̂2

)
=

(
X′1X1 X′1X2
X′2X1 X′2X2

)−1(X′1Y
X′2Y

)
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The Frisch-Waugh-Lovell Theorem

The second strategy: the step OLS estimation

1 Regress each regressor in X2 on all regressors in X1, including the intercept,
and get the residuals from this regression, denoted as X̃2. That is, for each
regressor Xi in X2, i = k1 + 1, . . . , k , we estimate a multiple regression,

Xi = γ0 + γ1X1 + · · ·+ γk1Xk1 + v

The residuals from this regression is

X̃i = Xi − γ̂0 − γ̂1X1 − · · · − γ̂k1Xk1

As such, we can get an n × k2 matrix composed of all the residuals
X̃2 = (X̃k1+1 · · · X̃k).

2 Regress Y on all regressors in X1, denoting the residuals from this regression
as Ỹ.

3 Regress Ỹ on X̃2, and obtain the estimates of β2 as β2 = (X̃′2X̃2)−1X̃′2Ỹ.
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The Frisch-Waugh-Lovell Theorem

The Frisch-Waugh-Lovell Theorem

The Frisch-Waugh-Lovell (FWL) Theorem states that

1 the OLS estimates of β2 using the second strategy and that from the first
strategy are numerically identical.

2 the residuals from the regression of Ỹ on X̃2 and the residuals from Equation
(17) are numerically identical.
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The Frisch-Waugh-Lovell Theorem

An understanding of the FWL theorem

The FWL theorem provides a mathematical statement of how the multiple
regression coefficients in β̂2 capture the effects of X2 on Y, controlling for other
X.

Step 1 purges the effects of the regressors in X1 on the regressors in X2

Step 2 purges the effects of the regressors in X1 on Y.
Step 3 estimates the effect of the regressors in X2 on Y using the parts in X2
and Y that have excluded the effects of X1.
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The Frisch-Waugh-Lovell Theorem

An example of the FWL theorem

Consider a regression model with single regressor Yi = β0 + β1Xi + ui .

Following the estimation strategy in the FWL theorem, we can carry out the
following regressions,

1 Regress Yi on 1. That is, estimate the model Yi = α + ei . Then, the OLS
estimator of α is Ȳ and the residuals is yi = Yi − Ȳ

2 Similarly, regress Xi on 1. Then the residuals from this regression is
xi = Xi − X̄ .

3 Regress yi on xi without intercept. That is, estimate the model yi = β1xi + vi
4 We can obtain β̂1 directly by applying the formula in Equation (7). That is

β̂1 = (x′1x1)−1x′1y =

∑
i x1iyi∑
i x

2
1i

=

∑
i (Xi − X̄ )(Yi − Ȳ )∑

i (Xi − X̄ )2
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The Least Squares Assumptions in Multiple Regression

The least squares assumptions in Multiple Regression
Assumption #1

E (ui |xi ) = 0. The conditional mean of ui given X1i ,X2i , . . . ,Xki has mean of zero.
This is the key assumption to assure that the OLS estimators are unbiased.

Assumption #2

(Yi , x′i ) i = 1, . . . , n are i.i.d. This assumption holds automatically if the data are
collected by simple random sampling.

Assumption #3

Large outliers are unlikely, i.e.„ 0 < E (X4) <∞ and 0 < E (Y4) <∞. That is,
the dependent variables and regressors have finite kurtosis.

Assumption #4

No perfect multicollinearity. The regressors are said to exhibit perfect
multicollinearity if one of the regressor is a perfect linear function of the other
regressors.
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The Statistical Properties of the OLS Estimators in Multiple
Regression

Unbiasedness and consistency

When all the least squares assumptions are true, especially, E (ui |xi ) = 0, we can
prove

β̂ is unbiased, that is, E (β̂) = β.

β̂ is consistent, that is, as n→∞, β̂
p−−→ β.
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The Statistical Properties of the OLS Estimators in Multiple
Regression

The Gauss-Markov conditions and Theorem

The G-M conditions
The Gauss-Markov conditions for multiple regression are

1 E (u|X) = 0,
2 Var(u|X) = E (uu′|X) = σ2uIn (homoskedasticity),
3 X has full column rank (no perfect multicollinearity).

The G-M Theorem
If the Gauss-Markov conditions hold in the multiple regression model, then the
OLS estimator β̂ is more efficient than any other linear unbiased estimator β̃.
That is, the OLS estimator is BLUE.
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The Statistical Properties of the OLS Estimators in Multiple
Regression

The conditional covariance matrix of β̂

The homoskedasticity-only covariance matrix.

Var(β̂|X) = σ2u(X′X)−1 (18)

The heteroskedasticity-robust covariance matrix

Varh(β̂|X) = (X′X)
−1

Σ(X′X)−1 (19)

where Σ = X′ΩX and Ω = Var(u|X)
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The Statistical Properties of the OLS Estimators in Multiple
Regression

The asymptotic normal distribution

With large samples, the OLS estimator β̂ has the multivariate normal
asymptotic distribution as

β̂
d−−→ N(β,Σβ̂) (20)

Σβ̂ = Var(β̂|X).
Use Equation (18) for the homoskedastic case
Use Equation (19) for the heteroskedastic case.
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The Omitted Variable Bias

The definition of the omitted variable bias

The omitted variable bias arises when two conditions are met

1 The included regressors X is correlated with the omitted regressors, denoted
as Z.

2 The omitted variables, Z, are determinants of the dependent variable Y.
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The reason for the omitted variable bias
The true model
Suppose that the true model is

Y = Xβ + Zγ + u (21)

We assume E (u|X,Z) = 0.
The OLS estimators, β̂ and γ̂, from Equation (21) are unbiased.
We also assume Cov(X,Z) 6= 0.

The wrong model

Y = Xβ + ε (22)

ε represents all other factors that are not in Equation (22), including Z
Cov(X,Z) 6= 0 ⇒ Cov(X, ε) 6= 0 ⇒ E (ε|X) 6= 0
The OLS estimator, β̃, from Equation (22) is biased.



The Omitted Variable Bias

An illustration using a linear model with two regressors

Suppose the true model is

Yi = β0 + β1X1i + β2X2i + ui , i = 1, . . . , n

with E (ui |X1i ,X2i ) = 0
However, we estimate a wrong model of

Yi = β0 + β1X1i + εi , i = 1, . . . , n
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The Omitted Variable Bias

An illustration using a linear model with two regressors
(cont’d)

We can prove that β1 can be expressed as

β̂1 = β1 +
1
n

∑
i (X1i − X̄1)εi

1
n

∑
i (Xi − X̄1)2

As n→∞, 1
n

∑
i (X1i − X̄1)εi

p−−→ Cov(X1, ε) = ρX1εσX1σε and
1
n

∑
i (Xi − X̄1)2

p−−→ σ2X1
.

We have the formula to quantify the omitted variable bias as

β̂1
p−−→ β1 + ρx1ε

σε
σx1︸ ︷︷ ︸

omitted variable bias

(23)
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The Omitted Variable Bias

Some facts summarized from the formula

Omitt variable bias is a problem irregardless of whether the sample size is
large or small.
Whether this bias is large or small in practice depends on |ρX1ε|.
The direction of this bias is determined by the sign of ρX1ε.
One easy way to detect the existence of the omitted variable bias is that
when adding a new regressor, the estimated coefficients on some previously
included regressors change substantially.
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Multicollinearity

Definition of perfect multicollinearity

Perfect multicollinearity refers to the situation when one of the regressor is a
perfect linear function of the other regressors.

In the terminology of linear algebra, perfect multicollinearity means that the
vectors of regressors are linearly dependent.
That is, the vector of a regressor can be expressed as a linear combination of
vectors of the other regressors.
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Multicollinearity

Understanding perfect multicollinearity

Linear dependence

Write the matrix of regressors X with column vectors

X = [ι,X 1,X 2, . . . ,X k ]

That the k + 1 column vectors are linearly dependent means that there exist
some (k + 1)× 1 nonzero vector β = [β0, β1, . . . , βk ]′ such that

β0ι + β1X 1 + · · ·+ βkX k = 0
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Multicollinearity

Consequence of perfect multicollinearity

If X i are linearly dependent, then

X does not have full column rank.
If X does not have full column rank, then X′X is singular.
It means that the inverse of X′X does not exist.
If X′X is not invertible, the OLS estimator based on the formula of
β̂ = (X′X)−1X′Y does not exist.
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Multicollinearity

Examples of perfect multicollinearity

Suppose we have a multiple regression model

Y = β0 + β1X1 + β2X2 + u

Cases that imply perfect multicollinearity

Z = aX1 or Z = bX2

Z = 1− aX1

Z = aX1 + bX2

Cases that do not imply perfect multicollinearity

Z = X 2
1

Z = lnX1

Z = X1X2
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Multicollinearity

The dummy variable trap

The dummy variable trap is a case of perfect multicollinearity that a modeler
often encounters.
We use dummy variables to distinguish different groups of objects.
Question: How many dummy variables should we include?

An example

Four ethnic groups: White, African American, Hispanic, and Asian.
We want to estimate a regression model to see whether wages among these
four groups are different.
Suppose we have four observations: Chuck (White), Mike (African
American), Juan (Hispanic), and Li (Asian). Define dummy variables as

White =


1
0
0
0

 , African =


0
1
0
0

 , Hispanic =


0
0
1
0

 , Asian =


0
0
0
1
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Multicollinearity

The wrong regression model

We set up a regression model as follows

Wagei = β0 + β1Whitei + β2Africani + β3Hispanici + β4Asiani + ui (24)

Dummy variable trap (perfect multicollinearity) occurs
1
1
1
1

 = White + African + Hispanic + Asian
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Multicollinearity

Remedy to dummy variable trap

To avoid the dummy variable trap, we can either of the following two methods:

1 drop the constant term
2 drop one dummy variable

The difference between these two methods lies in how we interpret the coefficients
on dummy variables.
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Multicollinearity

Drop the constant term

If we drop the constant term, the model becomes

Wage = β1White + β2African + β3Hispanic + β4Asian + u (25)

For Chuck or all white people, the model becomes

Wage = β1 + u

Then β1 is the population mean wage of whites, that is,

β1 = E (Wage|White = 1)

Similarly, β2, β3, and β4 are the population mean wage of African Americans,
Hispanics, and Asians, respectively.
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Multicollinearity

Drop one dummy variable

If we drop the dummy variable for white people, then the model becomes

Wage = β1 + β2African + β3Hispanic + β4Asian + u (26)

For white people, the model is

Wage = β1 + ui

And the constant term β1 is just the population mean of whites, that is,

β1 = E (Wage|White = 1)

So we say that white people serve as a reference case in Model (26).
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Multicollinearity

Drop one dummy variable (cont’d)

For African Americans, the model is

Wage = β1 + β2 + u

From it we have E (Wage|African = 1) = β1 + β2 so that

β2 = E (Wage|African = 1)− β1 = E (Wage|African = 1)− E (Wage|White = 1)

Similarly, we can get that

β3 = E (Wage|Hispanic = 1)− E (Wage|White = 1)

β4 = E (Wage|Asian = 1)− E (Wage|White = 1)
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Multicollinearity

Definition of imperfect multicollinearity

Imperfect multicollinearity is a problem of regression when two or more regressors
are highly correlated.

Although they bear similar names, imperfect multicollinearity and perfect
multicollinearity are two different concepts.

Perfect multicollinearity is a problem of modeling building, resulting in a total
failure to estimate a linear model.
Imperfect multicollinearity is usually a problem of data in the sense that data
for two variables are highly correlated.
Imperfect multicollinearity does not affect the unbiasedness of the OLS
estimators. However, it does affect the efficiency, i.e., the variance of the
OLS estimators.
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Multicollinearity

An illustration using a regression model with two regressors

Suppose we have a linear regression model with two regressors

Y = β0 + β1X1 + β2X2 + u (27)

We can prove that

Var(β̂1|X) =
σ2u∑

i (X1i − X̄ )21

1
(1− r212)

where r12 is the correlation coefficient between X1 and X2.
When X1 and X2 are highly correlated, that is r212 gets close to 1, then
Var(β̂1|X) becomes very large.
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Multicollinearity

The consequence and detection of imperfect multicollinearity

The consequence of imperfect multicollinearity is that I may more often fail
to reject the null hypothesis of a zero coefficient with t-statistic.
The variance inflation factor (VIF) is a commonly used indicator for detecting
multicollinearity. The definition is

VIF =
1

1− r212

The smaller VIF is for a regressor, the less severe the problem of
multicollinearity is.
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Multicollinearity

The remedies to imperfect multicollinearity

Include more sample in hope of the variation in X getting widened, i.e.,
increasing

∑
i (X1i − X̄1)2.

Drop the variable(s) that is highly correlated with other regressors. Notice
that by doing this we are at the risk of suffering the omitted variable bias.
There is always a trade-off between including all relevant regressors and
making the regression model parsimonious.
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