
Replication of Examples in Chapter 6
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1 Introduction

This document is to show how to perform hypothesis testing for a single coefficient in a simple
linear regression model. I replicate examples that occur in Chapter 6.

2 Scatterplot with two regressors

library(AER)

library(foreign)

classdata <- read.dta("caschool.dta")

We can draw the scatterplots of STR against TestScr and PctEl against TestScr, and arrange
the two scatterplot in one frame.

# scatterplot

oldpar <- par(mfrow = c(2, 1))

plot(classdata$str, classdata$testscr, col = "red",

main = "student-teacher ratio vs test scores",

xlab = "Student-teacher ratio", ylab = "Test scores")

plot(classdata$el_pct, classdata$testscr, col = "blue",

main = "English learners vs test scores",

xlab = "Percentage of English learners",

ylab = "Test scores")

par(oldpar)
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Figure 1: The scatterplots of test scores against student-teacher ratios and the percentage of
English learners
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3 The OLS estimation of the multiple regression model

The multiple regression model is

TestScorei = β0 + β1STRi + β2PctEL+ ui (1)

Then we define the formula object for the multiple regression model and estimate it

mod1 <- lm(testscr ~ str + el_pct, data = classdata)

(sum.mod1 <- summary(mod1))

Call:

lm(formula = testscr ~ str + el_pct, data = classdata)

Residuals:

Min 1Q Median 3Q Max

-48.845 -10.240 -0.308 9.815 43.461

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 686.03225 7.41131 92.566 < 2e-16 ***

str -1.10130 0.38028 -2.896 0.00398 **

el_pct -0.64978 0.03934 -16.516 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 14.46 on 417 degrees of freedom

Multiple R-squared: 0.4264,Adjusted R-squared: 0.4237

F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16

We can get the estimated coefficients, predicted values, residuals, SER, R2, and the adjusted
R2 using the following commands.

# get the compoenents

b <- coef(mod1) # coefficients

y.hat <- predict(mod1) # predicted value of y

u.hat <- resid(mod1) # residuals

SER <- sum.mod1$sigma # standard error of regression

R2 <- sum.mod1$r.squared # R squared
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AR2 <- sum.mod1$adj.r.squared # adjusted R squared

So the coefficient on STR is -1.101, which means that, holding PctEL constant, one unit
increase in STR will lead to a decrease in TestScr by -1.101 units. The R2 and the adjusted
R2 are round 0.426 and 0.424, respectively.

The homoskedasticity-only covariance matrix and the heteroskedasticity-consistent covariance
matrix of the coefficients can be computed by the command below

(vcov.hm <- vcov(mod1)) # homoskedasticity-only covariance matrix

se.hm <- sqrt(diag(vcov.hm)) # homoskedasticity-only standard error

(Intercept) str el_pct

(Intercept) 54.92755274 -2.79596671 0.030730824

str -2.79596671 0.14461160 -0.002807340

el_pct 0.03073082 -0.00280734 0.001547836

(vcov.ht <- vcovHC(mod1, type = "HC1")) # HCCM

se.ht <- sqrt(diag(vcov.ht)) # heterskedasticity-robust se

(Intercept) str el_pct

(Intercept) 76.18189018 -3.7569802107 -0.0134448546

str -3.75698021 0.1873566583 -0.0003131024

el_pct -0.01344485 -0.0003131024 0.0009629703

4 An illustration of TSS = ESS + SSR

Let’s verify the property of the OLS estimator, TSS = ESS + SSR. We can compute the
three quantities using the following commands.

TSS <- with(classdata, sum((testscr - mean(testscr))^2))

ESS <- sum((y.hat - mean(y.hat))^2)

SSR <- sum(u.hat^2)

When we directly verify the equality, what we get is FALSE.

TSS == ESS + SSR

[1] FALSE

This is due to the error of computation with floating point numbers. So instead of directly
compare the LHS with the RHS, we can do the following,
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abs(TSS - ESS - SSR) < 1.0e-9

[1] TRUE

5 An illustration of the FWL theorem

Now let’s demonstrate the FWL theorem. Suppose we are interested in the effect of STR on
TestScr controlling for PctEl. So according to the FWL theorem, we can follow three steps
to estimate the coefficient on STR

Step 1 Regress STR on PctEL and get the residuals;

Step 2 Regress TestScr on PctEl and get the residuals;

Step 3 Regress the residuals in the second step on the residuals in the first step to get the
estimated coefficient.

These steps can be implemented by the following command

# step 1

m1 <- lm(str ~ el_pct, data = classdata)

# step 2

m2 <- lm(testscr ~ el_pct, data = classdata)

# step 3

m3 <- lm(resid(m2) ~ resid(m1) - 1)

Finally, we compare the estimated coefficient on STR following the steps above and that
estimated using both STR and PctEl at a time.

abs(coef(m3) - b[2]) < 1.0e-10

resid(m1)

TRUE

6 An illustration of the dummy variable trap

We define dummy variables for small class, medium class, large class, according to STR

Small =

1, if STR < 18

0, otherwise
,Medium =

1, if 18 ≤ STR < 20

0, otherwise
, Large =

1, if STR ≥ 20

0, otherwise
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Defining these three dummy variables can be accomplished by the following commands

small <- ifelse(classdata$str < 18, 1, 0)

middle <- ifelse(classdata$str >= 18 & classdata$str < 20, 1, 0)

large <- ifelse(classdata$str >= 20, 1, 0)

from which we get three vectors consisting of 1 and 0.

We can more easily define dummy variables in R using a factor object as follows

classsize <- ifelse(classdata$str < 18, "small",

ifelse(classdata$str >= 18 & classdata$str < 20, "medium", "large"))

classsize <- as.factor(classsize)

Let’s first try to estimate a model with an intercept and all three dummy variables, which is
an example of the dummy variable trap.

mod3 <- lm(testscr ~ small + middle + large, data = classdata)

summary(mod3)

Call:

lm(formula = testscr ~ small + middle + large, data = classdata)

Residuals:

Min 1Q Median 3Q Max

-48.441 -14.354 0.534 13.749 45.109

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 649.979 1.378 471.721 < 2e-16 ***

small 12.067 2.551 4.731 3.06e-06 ***

middle 5.212 2.005 2.600 0.00965 **

large NA NA NA NA

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.59 on 417 degrees of freedom

Multiple R-squared: 0.05272,Adjusted R-squared: 0.04818

F-statistic: 11.6 on 2 and 417 DF, p-value: 1.247e-05

We can see that R automatically drop the dummy variable for large classes in estimation, re-
sulting in NA for large and a warning message saying that Coefficients: (1 not defined
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because of singularities). So we should drop a dummy variable to set up a correct model.

mod3.a <- lm(testscr ~ small + middle, data = classdata)

summary(mod3.a)

Call:

lm(formula = testscr ~ small + middle, data = classdata)

Residuals:

Min 1Q Median 3Q Max

-48.441 -14.354 0.534 13.749 45.109

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 649.979 1.378 471.721 < 2e-16 ***

small 12.067 2.551 4.731 3.06e-06 ***

middle 5.212 2.005 2.600 0.00965 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.59 on 417 degrees of freedom

Multiple R-squared: 0.05272,Adjusted R-squared: 0.04818

F-statistic: 11.6 on 2 and 417 DF, p-value: 1.247e-05

Equivalently, we can drop the intercept term.

mod4 <- lm(testscr ~ small + middle + large - 1, data = classdata)

summary(mod4)

Call:

lm(formula = testscr ~ small + middle + large - 1, data = classdata)

Residuals:

Min 1Q Median 3Q Max

-48.441 -14.354 0.534 13.749 45.109

Coefficients:

Estimate Std. Error t value Pr(>|t|)

small 662.046 2.146 308.4 <2e-16 ***

middle 655.191 1.456 450.0 <2e-16 ***
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large 649.979 1.378 471.7 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.59 on 417 degrees of freedom

Multiple R-squared: 0.9992,Adjusted R-squared: 0.9992

F-statistic: 1.734e+05 on 3 and 417 DF, p-value: < 2.2e-16

In fact, when we use the factor object, classsize, the formula get easier as follows,

mod5 <- lm(testscr ~ classsize, data = classdata)

summary(mod5)

Call:

lm(formula = testscr ~ classsize, data = classdata)

Residuals:

Min 1Q Median 3Q Max

-48.441 -14.354 0.534 13.749 45.109

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 649.979 1.378 471.721 < 2e-16 ***

classsizemedium 5.212 2.005 2.600 0.00965 **

classsizesmall 12.067 2.551 4.731 3.06e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.59 on 417 degrees of freedom

Multiple R-squared: 0.05272,Adjusted R-squared: 0.04818

F-statistic: 11.6 on 2 and 417 DF, p-value: 1.247e-05

which yields the same estimation as specifying two dummy variables explicitly.
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