
Lecture 7: Hypothesis Test and Confidence Intervals of Linear
Regression with a Single Regressor
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1 Introduction

This chapter consists of two parts. The first part concerns hypothesis testing for a single coef-
ficient in a simple linear regression model. The basic concepts and ideas of hypothesis testing
in this chapter can be naturally adopted in multiple regression models (Chapters 6 and 7). The
second part goes back to some estimation issues, including a binary regressor, homoskedasticity
versus heteroskedasticity, as well as the Gauss-Markov theorem, one of the most fundamental
theories regarding the OLS estimation. Finally, this chapter ends up with the small sample
properties of the t-statistics.

One of the features of this textbook is that it introduces the heteroskedasticity-robust standard
error of the OLS estimators, which is considered as a general case and homoskedasticity as a
special case. This is contrary to the common layouts of an Econometrics textbook that often first
gives the assumption of homoskedasticity, which is a component of the classical OLS assumptions
(equivalent to the three least squares assumptions plus the assumption of the homoskedastic and
conditionally normally distributed errors). Then treat heteroskedasticity as a violation to these
assumptions. Also, you should be aware that most discussions of the sample distributions in
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this textbook are in the context of a large sample, while the small sample statistical properties
are not the focus.

2 Testing Hypotheses about One of the Regression Coefficients

2.1 Two-sided hypotheses concerning β1

In the last lecture, we estimate a simple linear regression model for test scores and class sizes,
which yields the following estimated sample regression function,

̂TestScore = 698.93− 2.28× STR (1)

Now the question faced by the superintendent of the California elementary school districts is
whether the estimated coefficient on STR is valid. In the terminology of statistics, his question
is whether β1 is statistically significantly different from zero. More often, we simply say whether
β1 is significant.

Generally, as we did in Lecture 3, we can do a hypothesis test regarding whether β1 takes on a
specific value β1,0 through the following steps.

Step 1: set up the two-sided hypothesis

H0 : β1 = β1,0 vs. H1 : β1 6= β1,0

The null hypothesis is that β1 is equal to a specific value β1,0, and the alternative hypothesis is
the opposite.

Step 2: Compute the t-statistic

The general form of the t-statistic is

t =
estimator− hypothesized value
standard error of the estimator

(2)

The t-statistics for testing β1 is then

t =
β̂1 − β1,0
SE(β̂1)

(3)

• The standard error of β̂1 is calculated as
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SE(β̂1) =
√
σ̂2
β̂1

(4)

where

σ̂2
β̂1

=
1

n

1
n−2

∑n
i=1(Xi − X̄)2û2i[

1
n

∑n
i=1(Xi − X̄)2

]2 (5)

• How to understand Equation (5):

– σ̂2
β̂1

is the estimator of the variance of β̂1, i.e., Var(β̂1).

– In the last lecture, we know that the variance of β̂1 is

σ2
β̂1

=
1

n

Var ((Xi − µX)ui)

(Var(Xi))
2

– The denominator in Equation (5) is a consistent estimator of Var(Xi)
2.

– The numerator in Equation (5) is a consistent estimator of Var((Xi − µX)ui).

– The standard error computed from Equation (5) is the heteroskedasticity-robust
standard error, which will be explained in detail shortly in this lecture.

Step 3: Compute the p-value

The p-value is the probability of observing a value of β̂1 at least as different from β1,0 as the
estimate actually computed (β̂act1 ), assuming that the null hypothesis is correct.

Accordingly, under the null hypothesis, the p-value for testing β1 can be expressed with a
probability function as

p-value = PrH0

(
|β̂1 − β1,0| > |β̂act1 − β1,0|

)
= PrH0

(∣∣∣∣∣ β̂1 − β1,0SE(β̂1)

∣∣∣∣∣ >
∣∣∣∣∣ β̂act1 − β1,0
SE(β̂1)

∣∣∣∣∣
)

= PrH0

(
|t| > |tact|

)
With a large sample, the t statistic is approximately distributed as a standard normal random
variable. Therefore, we can compute

p-value = Pr
(
|t| > |tact|

)
= 2Φ(−|tact|)

where Φ(·) is the c.d.f. of the standard normal distribution.

The null hypothesis is rejected at the 5% significance level if the p-value < 0.05 or, equivalently,
|tact| > 1.96.
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Application to test scores

The OLS estimation of the linear regression model of test scores against student-teacher ratios,
together with the standard errors of all parameters in the model, can be represented using the
following equation,

̂TestScore = 698.9
(10.4)

− 2.28
(0.52)

× STR, R2 = 0.051, SER = 1.86

The heteroskedasticity-robust standard errors are reported in the parentheses, that is, SE(β̂0) =

10.4 and SE(β̂1) = 0.52.

The superintendent’s question is whether β1 is significant, for which we can test the null hy-
pothesis against the alternative one as

H0 : β1 = 0, H1 : β1 6= 0

The t-statistics is

t =
β̂1

SE(β̂1)
=
−2.28

0.52
= −4.38 < −1.96

The p-value associated with tact = −4.38 is approximately 0.00001, which is far less than 0.05.

Based on the t-statistics and the p-value, we can say the null hypothesis is rejected at the 5%
significance level. In English, it means that the student-teacher ratios do have a significant effect
on test scores.

2.2 The one-sided alternative hypothesis

The one-sided hypotheses

In some cases, it is appropriate to use a one-sided hypothesis test. For example, the superin-
tendent of the California school districts want to know whether an increase in class sizes has a
negative effect on test scores, that is, β1 < 0.

For a one-sided test, the null hypothesis and the one-sided alternative hypothesis are 1

H0 : β1 = β1,0, H1 : β1 < β1,0
1Note that the trick here is we put the desired hypothesis to the alternative place.
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Figure 1: Calculating the p-value of a two-sided test when tact = −4.38

The one-sided left-tail test

• The t-statistic is the same as in a two-sided test

t =
β̂1 − β1,0
SE(β̂1)

• Since we test β1 < β1,0, if this is true, the t-statistics should be statistically significantly
less than zero.

• The p-value is computed as Pr(t < tact) = Φ(tact).

• The null hypothesis is rejected at the 5% significance level when the p − value < 0.05 or
tact < −1.645.

• In the application of test scores, the t-statistics is -4.38, which is less than -1.645 and
-2.33 (the critical value for a one-sided test with a 1% significance level). Thus, the null
hypothesis is rejected at the 1% level.

3 Confidence Intervals for a Regression Coefficient

3.1 Two equivalent definitions of confidence intervals

Recall that a 95% confidence interval for β1 has two equivalent definitions:
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1. It is the set of values of β1 that cannot be rejected using a two-sided hypothesis test with
a 5% significance level.

2. It is an interval that has a 95% probability of containing the true value of β1.

3.2 Construct the 95% confidence interval for β1

The 95% confidence interval for β1 can be constructed using the t-statistic, assuming that with
large samples, the t-statistic is approximately normally distributed. Since the 95% critical value
of a standard normal distribution is 1.96, we can obtain the 95% confidence interval for β1 as

−1.96 ≤ β̂1 − β1
SE(β̂1)

≤ 1.96

Then, β̂1 − 1.96SE(β̂1) ≤ β1 ≤ β̂1 + 1.96SE(β̂1)

The 95% confidence interval for β1 is[
β̂1 − 1.96SE(β̂1), β̂1 + 1.96SE(β̂1)

]

3.3 The application to test scores

In the application to test scores, given that β̂1 = −2.28 and SE(β̂1) = 0.52, the 95% confidence
interval for β1 is −2.28± 1.96× 0.52, or −3.30 ≤ β1 ≤ −1.26.

Note that the confidence interval only spans over the negative region with zero leaving outside the
interval, which implies that the null hypothesis of β1 = 0 can be rejected at the 5% significance
level.

3.4 Confidence intervals for predicted effects of changing X

β1 is the marginal effect of X on Y , that is,

β1 =
dY

dX
⇒ dY = β1dX

When X changes by ∆X, Y changes by β1∆X.

So the 95% confidence interval for the change in Y when the change in X is ∆X is[
β̂1 − 1.96SE(β̂1), β̂1 + 1.96SE(β̂1)

]
×∆X

=
[
β̂1∆X − 1.96SE(β̂1)∆X, β̂1∆X + 1.96SE(β̂1)∆X

]

6



4 Regression When X is a Binary Variable

4.1 A binary variable

A binary variable takes on values of one if some condition is true and zero otherwise, which
is also called a dummy variable, a categorical variable, or an indicator variable.

For example,

Di =

1, if the ith subject is female

0, if the ith subject is male

The linear regression model with a dummy variable as a regressor is

Yi = β0 + β1Di + ui, i = 1, . . . , n (6)

The coefficient onDi is estimated by the OLS estimation method in the same way as a continuous
regressor. The difference lies in how we interpret β1.

4.2 Interpretation of the regression coefficients

Given that the assumption E(ui|Di) = 0 holds in Equation (6), we have two population regres-
sion functions for the two cases, that is,

• When Di = 1, E(Yi|Di = 1) = β0 + β1

• When Di = 0, E(Yi|Di = 0) = β0

Therefore, β1 = E(Yi|Di = 1) − E(Yi|Di = 0), that is, the difference in the population
means between two groups represented by Di = 1 and Di = 0, respectively.

4.3 Hypothesis tests and confidence intervals

The hypothesis tests and confidence intervals for the coefficient on a binary variable follows the
same procedure of those for a continuous variable X.

Usually, the null and alternative hypotheses concerning a dummy variable are

H0 : β1 = 0 vs. H1 : β1 6= 0

Therefore, the t-statistic is

t =
β̂1

SE(β̂1)
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And the 95% confidence interval is

β̂1 ± 1.96SE(β̂1)

4.4 Application to test scores

In the application of the regression of test scores against student-teacher ratio, instead of using
the continuous variable STR, we use a binary variable D to represent small and large classes.
That is,

Di =

1, if STRi < 20 (small classes)

0, if STRi ≥ 20 (large classes)

Using the OLS estimation, the estimated regression function is

̂TestScore = 650.0
(1.3)

− 7.4
(1.8)

D, R2 = 0.037, SER = 18.7

where the standard errors of the estimated coefficients are reported in parentheses.

The t-statistic for β1 is t = 7.4/1.8 = 4.04 > 1.96 so that β1 is significantly different from zero.
Thus, we can say that the test score in small classes are on average 7.4 higher than that in large
classes. The confidence interval for the difference is 7.4± 1.96× 1.8 = (3.9, 10.9).

5 Heteroskedasticity and Homoskedasticity

5.1 What are heteroskedasticity and homoskedasticity?

Homoskedasticity

The error term ui is homoskedastic if the conditional variance of ui given Xi is constant for
all i = 1, . . . , n. Mathematically, it says Var(ui|Xi) = σ2, for i = 1, . . . , n, i.e., the variance of
ui for all i is a constant and does not depend on Xi.

Heteroskedasticity

In contrast, the error term ui is heteroskedastic if the conditional variance of ui given Xi

changes on Xi for i = 1, . . . , n. That is, Var(ui|Xi) = σ2i , for i = 1, . . . , n.

e.g.. A multiplicative form of heteroskedasticity is Var(ui|Xi) = σ2f(Xi) where f(Xi) is a
function of Xi, for example, f(Xi) = Xi as a simplest case.

Figure 4 for a visual comparison between homoskedasticity and heteroskedasticity.
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Figure 2: Homoskedasticity

Figure 3: Heteroskedasticity
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(a) Homoskedasticity

(b) Heteroskedasticity

Figure 4: Homoskedasticity Versus Heteroskedasticity
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5.2 Mathematical implications of homoskedasticity

Unbiasedness, consistency, and the asymptotic distribution

As long as the least squares assumptions holds, whether the error term, ui, is homoskedastic or
heteroskedastic does not affect unbiasedness, consistency, and the asymptotic normal distribu-
tion of the OLS estimators.

• The unbiasedness requires that E(ui|Xi) = 0

• The consistency requires that E(Xiui) = 0, which is true if E(ui|Xi) = 0.

• The asymptotic normal distribution requires additionally that Var((Xi − µX)ui) < ∞,
which still holds as long as Assumption 3 holds, that is, no extreme outliers of Xi.

Efficiency

The existence of heteroskedasticity affects the efficiency of the OLS estimator

• Suppose β̂1 and β̃1 are both unbiased estimators of β1. Then, β̂1 is said to be more
efficient than β̃1 if Var(β̂1) < Var(β̃1).

• When the errors are homoskedastic, the OLS estimators β̂0 and β̂1 are the most effi-
cient among all estimators that are linear in Y1, . . . , Yn and are unbiased, conditional on
X1, . . . , Xn.

• See the Gauss-Markov Theorem below.

5.3 The homoskedasticity-only variance formula

Recall that we can write β̂1 as

β̂1 = β1 +

∑
i(Xi − X̄)ui∑
i(Xi − X̄)2

Therefore, if ui for i = 1, . . . , n is homoskedastic and σ2 is known, then

Var(β̂1|Xi) =

∑
i(Xi − X̄)2Var(ui|Xi)[∑

i(Xi − X̄)2
]2 =

σ2∑
i(Xi − X̄)2

(7)

When σ2 is unknown, then we use s2u = 1/(n − 2)
∑

i û
2
i as an estimator of σ2. Thus, the

homoskedasticity-only estimator of the variance of β̂1 is

σ̃2
β̂1

=
s2u∑

i(Xi − X̄)2
(8)
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And the homoskedasticity-only standard error is SE(β̂1) =
√
σ̃2
β̂1
.

Recall that the heteroskedasticity-robust standard error is

SE(β̂1) =
√
σ̂2
β̂1

where

σ̂2
β̂1

=
1

n

1
n−2

∑n
i=1(Xi − X̄)2û2i[

1
n

∑n
i=1(Xi − X̄)2

]2
which is also referred to as Eicker-Huber-White standard errors.

5.4 What does this mean in practice?

• Heteroskedasticity is common in cross-sectional data. If you do not have strong beliefs in
homoskedasticity, then it is always safer to report the heteroskedasticity-robust standard
errors and use these to compute the robust t-statistic.

• In most software, the default setting is to report the homoskedasticity-only standard errors.
Therefore, you need to manually add the option for the robust estimation.

– In R, you can use the following codes

library(lmtest)

model1 <- lm(testscr ~ str, data = classdata)

coeftest(model1, vcov = vcovHC(model1, type="HC1"))

– In STATA, you can use

regress testscr str, robust

6 The Theoretical Foundations of Ordinary Least Squares

In this section, we are going to show that under some conditions, the OLS estimators are the
Best Linear Unbiased Estimators (BLUE).

6.1 The Gauss-Markov conditions

We have already known the least squares assumptions: for i = 1, . . . , n, (1) E(ui|Xi) = 0, (2)
(Xi, Yi) are i.i.d., and (3) large outliers are unlikely. The Gauss-Markov conditions are similar
to these least squares assumptions and add the assumption of homoskedastic errors.
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The Gauss-Markov conditions

For X = [X1, . . . , Xn] 2

Here I use the vector notation to represent all observations of Xi for i = 1, . . . , n. We will
formally introduce the matrix notation for a linear regression model and the OLS estimation in
the next lecture.

1. E(ui|X) = 0

2. Var(ui|X) = σ2u, 0 < σ2u <∞

3. E(uiuj |X) = 0, i 6= j

From the three Least Squares Assumptions and the homoskedasticity assumption
to the Gauss-Markov conditions

Note that the conditional expectations in the Gauss-Markov conditions regard all observations
X, not just one observation, Xi. However, all the Gauss-Markov conditions can be derived from
the least squares assumptions plus the homoskedasticity assumption. Specifically,

• Assumptions (1) and (2) imply E(ui|X) = E(ui|Xi) = 0.

• Assumptions (1) and (2) imply Var(ui|X) = Var(ui|Xi). With the homoskedasticity as-
sumption, Var(ui|Xi) = σ2u, Assumption (3) then implies 0 < σ2u <∞.

• Assumptions (1) and (2) imply that E(uiuj |X) = E(uiuj |Xi, Xj) = E(ui|Xi)E(uj |Xj) =

0.

6.2 Linear conditionally unbiased estimator

The general form of a linear conditionally unbiased estimator of β1

The class of linear conditionally unbiased estimators consists of all estimators of β1 that are
linear function of Yi, . . . , Yn and that are unbiased, conditioned on X1, . . . , Xn.

For any linear estimator β̃1, it can be written as

β̃1 =
n∑
i=1

aiYi (9)

where the weights ai for i = 1, . . . , n depend on X1, . . . , Xn but not on Y1, . . . , Yn.
2Here I use the vector notation to represent all observations of Xi for i = 1, . . . , n. We will formally introduce

the matrix notation for a linear regression model and the OLS estimation in the next lecture.
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β̃1 is conditionally unbiased means that

E(β̃1|X) = β1 (10)

By the Gauss-Markov conditions, from Equation (9), we can have

E(β̃1|X) =
∑
i

aiE(β0 + β1Xi + ui|X)

= β0
∑
i

ai + β1
∑
i

aiXi

For Equation (10) being satisfied with any β0 and β1, we must have∑
i

ai = 0 and
∑
i

aiXi = 1

The OLS esimator β̂1 is a linear conditionally unbiased estimator

We have known that β̂1 is unbiased both conditionally and unconditionally. Next, we show that
it is linear.

β̂1 =

∑
i(Xi − X̄)(Yi − Ȳ )∑

i(Xi − X̄)2
=

∑
i(Xi − X̄)Yi∑
i(Xi − X̄)2

=
∑
i

âiYi

where the weights are

âi =
Xi − X̄∑
i(Xi − X̄)2

, for i = 1, . . . , n

Since β̂1 is a linear conditionally unbiased estimator, we must have∑
i

âi = 0 and
∑
i

âiXi = 1

which can be simply verified.

6.3 The Gauss-Markov Theorem

The Gauss-Markov Theorem for β̂1 states

If the Gauss-Markov conditions hold, then the OLS estimator β̂1 is the Best (most
efficient) Linear conditionally Unbiased Estimator (BLUE).

The theorem can also be applied to β̂0.

The proof of the Gauss-Markov theorem is in Appendix 5.2. A key in this proof is that we can
rewrite the expression of any linear conditionally unbiased estimator β̃1 as

β̃1 =
∑
i

aiYi =
∑
i

(âi + di)Yi = β̂1 +
∑
i

diYi
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And the goal of the proof is to show that

Var(β̂1|X) ≤ Var(β̃1|X)

The equality holds only when β̃1 = β̂1.

6.4 The limitations of the Gauss-Markov theorem

1. The Gauss-Markov conditions may not hold in practice. Any violation of the Gauss-
Markov conditions will result in the OLS estimators that are not BLUE. The table below
summarizes the cases in which a kind of violation occurs, the consequences of such violation
to the OLS estimators, and possible remedies.

Table 1: Summary of Violations of the Gauss-Markov Theorem

Violation Cases Consequences Remedies

E(u | X) 6= 0 omitted variables, endogeneity biased more X, IV method
Var(ui | X) not constant heteroskedasticity inefficient WLS, GLS, HCCME
E(uiuj | X) 6= 0 autocorrelation inefficient GLS, HAC

2. There are other candidate estimators that are not linear and conditionally unbiased; under
some conditions, these estimators are more efficient than the OLS estimators.

7 Using the t-Statistic in Regression When the Sample Size is
Small

7.1 The classical assumptions of the least squares estimation

We first expand the LS assumptions by two additional assumptions. One is the assumption of
the homoskedastic errors, and another one is the assumption that the conditional distribution
of ui given Xi is the normal distribution, i.e., ui | Xi ∼ N(0, σ2u) for i = 1, . . . , n.

All these assumptions together are often referred to as the classical assumptions of the least
squares estimation: For i = 1, 2, . . . , n

• Assumption 1: E(ui|Xi) = 0 (exogeneity of X)

• Assumption 2: (Xi, Yi) are i.i.d. (IID of X,Y )

• Assumption 3: 0 < E(X4
i ) <∞ and 0 < E(Y 4

i ) <∞ (No large outliers)

• Extended Assumption 4: Var(ui|Xi) = σ2u, and 0 < σ2u <∞ (homoskedasticity)

• Extended Assumption 5: ui|Xi ∼ N(0, σ2u) (normality)
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7.2 The t-Statistic and the Student-t Distribution

Under all the classical assumptions, we can construct the t-statistic for hypothesis testing of a
single coefficient. Even with a small samples, the t-statistic has an exact Student-t distribution.

The t-statistic is for β1

H0 : β1 = β1,0 vs H1 : β1 6= β1,0

t =
β̂1 − β1,0
σ̂β̂1

(11)

where

σ̂2
β̂1

=
s2u∑

i(Xi − X̄)2
and s2u =

1

n− 2

∑
i

û2i = SER2

the former of which is the homoskedasticity-only standard error of β̂1 and the latter is the
standard error of the regression.

When the classical least squares assumptions hold, the t-statistic has the exact distribution of
t(n− 2), i.e., the Student’s t distribution with (n− 2) degrees of freedom.

t =
β̂1 − β1,0
σ̂β̂1

∼ t(n− 2)

What follows is to show the above equation is true when all classical assumptions are true.

The Student-t distribution of t

The t statistic can be rewritten as

t =
(β̂1 − β1,0)/σβ̂1√

σ̂2
β̂1

σ2
β̂1

=
zβ̂1√
s2u
σ2
u

=
zβ̂1√
W
n−2

(12)

where

σ2
β̂1

=
σ2u∑

i(Xi − X̄)2

is the homoskedasticity-only variance of β̂1 when the variance of errors σ2u is known.

zβ̂1 =
β̂1 − β1,0
σβ̂1
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is the z-statistic which has a standard normal distribution, that is, zβ̂1 ∼ N(0, 1)

W = (n− 2)
s2u
σ2u

=

∑
i û

2
i

σ2u
=
∑
i

(
ûi
σu

)2

It can be shown that W is the sum of squares of (n−2) independent standard normally distributed
variables, which results in a chi-squared distribution with (n − 2) degrees of freedom. That is,
W ∼ χ2(n− 2), which is also independent of zβ̂1 . Therefore, the t-statistic in Equation (12), as
the ratio of zβ̂1 and

√
W/(n− 2), is distributed as t(n− 2).
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