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The Linear Regression Model

Definition of regress in Merriam-Webster’s dictionary

Merriam-Webster gives the following definition of the word "regress":
1 An act or the privilege of going or coming back
2 Movement backward to a previous and especially worse or more

primitive state or condition
3 The act of reasoning backward
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The Linear Regression Model

The meaning of regression in statistics?

In statistics, regression analysis focus on the conditional mean of the
dependent variable given the independent variables, which is a
function of the values of independent variables.
A very simple functional form of a conditional expectation is a linear
function. That is, we can model the conditional mean as follows,

E(Y | X = x) = f (x) = β0 + β1x (1)

The above equation is a simple linear regression function.
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The Linear Regression Model

Research question:

Let’s introduce a regression analysis with the application of test scores
versus class sizes in California school districts.

Can reducing class sizes increase students’ test scores?

How can we answer this question?
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The Linear Regression Model

Randomized controlled experiment

Randomly choose 42 students and divide them into two classes, with
one having 20 students and another having 22.
They are taught with the same subject and by the same teachers.
Randomization ensures that it is the difference in class sizes of the two
classes that is the only factor affecting test scores.
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The Linear Regression Model

Compute conditional means

Compute the expected values of test scores, given the different class
sizes.

E(TestScore|ClassSize = 20)

E(TestScore|ClassSize = 22)

The effect of class size on test scores is

E(TestScore|ClassSize = 20)− E(TestScore|ClassSize = 22)
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The Linear Regression Model

The population regression function for test scores on class
sizes

We use a linear regression function to describe the relationship
between test scores and class sizes.
The population regression function or the population regression line

E(TestScore|ClassSzie) = β0 + β1ClassSize (2)
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The Linear Regression Model

The simple linear regression model for test scores on class
sizes

We can lump all these factors into a single term, and set up a simple
linear regression model as follows,

TestScore = β0 + β1ClassSize + OtherFactors (3)

If we assume E(OtherFactors|ClassSize) = 0, then the simple linear
regression model becomes the population regression line.
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The Linear Regression Model

A distinction between the population regression function and
the population regression model

A population regression function
It’s a deterministic relation between class size and the expectation of
test scores.
However, we cannot compute the exact value of the test score of a
particular observation.

A population regression model
It’s a complete description of a data generating process (DGP).
The association between test scores and class size is not deterministic,
depending on the value of other factors.
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The Linear Regression Model

An interpretation of the population regression model

Now we have set up the simple linear regression model,

TestScore = β0 + β1ClassSize + OtherFactors

What is β1 and β0 represent in the model?
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The Linear Regression Model

Interpret β1

Denote ∆TestScore and ∆ClassSize to be their respective change.
Holding other factors constant, we have

∆TestScore = β1∆ClassSize

where β0 is removed because it is a constant.
Then, we get

β1 =
∆TestScore

∆ClassSize

That is, β1 measures the change in the test score resulting from a
one-unit change in the class size.
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The Linear Regression Model

Marginal effect

When TestScore and ClassSize are two continuous variable, we can
write β1 as

β1 =
dTestScore
dClassSize

We often call β1 as the marginal effect of the class size on the test
score.
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The Linear Regression Model

Holding other things constant

The phrase of "holding other factors constant" is important. Without
it, we cannot disentangle the effect of class sizes on test scores from
other factors.
"Holding other things constant" is often expressed as the notion of
ceteris paribus.
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The Linear Regression Model

Interpret β0

β0 is the intercept in the model.
Sometimes it bears real meanings, but sometimes it merely represents
an intercept.
In regression model of test scores on class sizes, β0 is the test score
when the class size and other factors are all zero, which is obviously
nonsensical.
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The Linear Regression Model

The general linear regression model

Consider two random variables Y and X . For both, there are n
observations so that each observation i = 1, 2, 3, . . . is associated with
a pair of values of (Xi ,Yi ).
Then a simple linear regression model that associates Y with X is

Yi = β0 + β1Xi + ui , for i = 1, . . . , n (4)

Yi is called the dependent variable, the regressand, or the LHS
(left-hand side) variable.
Xi is called the independent variable, the regressor, or the RHS
(right-hand side) variable.
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The Linear Regression Model

The general linear regression model (cont’d)

β0 is the intercept, or the constant term. It can either have economic
meaning or have merely mathematical sense, which determines the
level of the regression line, i.e., the point of intersection with the Y
axis.
β1 is the slope of the population regression line. Since β1 = dYi/dXi ,
it is the marginal effect of X on Y . That is, holding other things
constant, one unit change in X will make Y change by β1 units.
ui is the error term. ui = Yi − (β0 + β1Xi ) incorporates all the other
factors besides X that determine the value of Y .
β0 + β1Xi represents the population regression function(or the
population regression line).
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The Linear Regression Model

An graphical illustration of a linear regression model

Figure: The Population Regression Line
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The OLS Estimation Method for a Linear Regression Model

The intuition for the OLS and minimization

We use the ordinary least squares (OLS) estimation method to
estimate the simple linear regression model.

Yi = β0 + β1Xi + ui , for i = 1, . . . , n
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The OLS Estimation Method for a Linear Regression Model

Ordinary

It means that the OLS estimator is a very basic method, from which
we may derive some variations of the OLS estimator.
Other least squares estimators: the weighted least squares (WLS), and
the generalized least squares (GLS).
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The OLS Estimation Method for a Linear Regression Model

Least

It means that the OLS estimator tries to minimize something. The
"something" is the mistakes we make when we try to guess (estimate)
the values of the parameters in the model.
If our guess for β0 and β1 is b0 and b1, then the mistake of our guess is

ûi = Yi − b0 − b1Xi
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The OLS Estimation Method for a Linear Regression Model

Squares

It represent the actual thing (a quantity) that we minimize. The OLS
does not attempt to minimize each ûi .
We minimize the sum of the squared mistakes,

n∑
i=1

û2
i

Taking square is to avoid possible offsetting between positive and
negative values of ûi in

∑
i ûi .
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The OLS Estimation Method for a Linear Regression Model

The OLS estimators for β0 and β1

Let b0 and b1 be some estimators of β0 and β1, respectively.
The OLS estimators are the solution to the following minimization
problem:

min
b0,b1

S(b0, b1) =
n∑

i=1

û2
i =

n∑
i=1

(Yi − b0 − b1Xi )
2 (5)

where S(b0, b1) is a function of b0 and b1
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The OLS Estimation Method for a Linear Regression Model

The first order conditions

Evaluated at the optimal solution (β̂0, β̂1), the FOCs are

∂S

∂b0
(β̂0, β̂1) =

n∑
i=1

(−2)(Yi − β̂0 − β̂1Xi ) = 0 (6)

∂S

∂b1
(β̂0, β̂1) =

n∑
i=1

(−2)(Yi − β̂0 − β̂1Xi )Xi = 0 (7)
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The OLS Estimation Method for a Linear Regression Model

Get the OLS estimator β̂0

From the first condition, we have

n∑
i=1

Yi − nβ̂0 − β̂1

n∑
i=1

Xi = 0

β̂0 =
1
n

n∑
i=1

Yi −
β̂1

n

n∑
i=1

Xi = Y − β̂1X (8)
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The OLS Estimation Method for a Linear Regression Model

Get the OLS estimator β̂1

From the second condition, we have

n∑
i=1

XiYi − β̂0

n∑
i=1

Xi − β̂1

n∑
i=1

X 2
i = 0

n∑
i=1

XiYi −
1
n

n∑
i=1

Xi

n∑
i=1

Yi + β̂1
1
n

(
n∑

i=1

Xi

)2

− β̂1

n∑
i=1

X 2
i = 0

β̂1 =
n
∑n

i=1 XiYi −
∑n

i=1 Xi
∑n

i=1 Yi

n
∑n

i=1 X
2
i − (

∑n
i=1 Xi )2 (9)
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The OLS Estimation Method for a Linear Regression Model

A trick of collecting terms

∑
i

(Xi − X )(Yi − Y ) =
∑
i

XiYi − X
∑
i

Yi − Y
∑
i

Xi +
∑
i

XY

=
∑
i

XiYi − 2nXY + nXY

=
∑
i

XiYi − nXY

=
1
n

(
n
∑
i

XiYi −
∑
i

Xi

∑
i

Yi

)

Similarly, we can show that
∑

i (Xi − X )2 = 1
n

[
n
∑

i X
2
i − (

∑
i Xi )

2].
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The OLS Estimation Method for a Linear Regression Model

Concise expressions of β̂1

Collecting terms in the expression in β̂1, we have

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2

The sample covariance of X and Y is
sXY = 1

n−1
∑n

i=1(Xi − X )(Yi − Y )

The sample variance of X is s2
X = 1

n−1
∑n

i=1(Xi − X )2

β̂1 can also be written as
β̂1 =

sXY
s2
X
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The OLS Estimation Method for a Linear Regression Model

Summary of the OLS estimators

In sum, the OLS estimators for β0 and β1 as

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2
=

sXY
s2
X

(10)

β̂0 = Y − β̂1X (11)
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The OLS Estimation Method for a Linear Regression Model

The predicted values, residuals, and the sample regression
line

Ŷi = β̂0 + β̂1Xi

The predicted values: Ŷi for i = 1, . . . , n
The residuals: ûi = Yi − Ŷi for i = 1, . . . , n
The sample regression line: β̂0 + β̂1Xi

The sample average point (X ,Y ) is always on the sample regression
line because

Y = β̂0 + β̂1X
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The OLS Estimation Method for a Linear Regression Model

A comparison between the population regression model and
the sample counterparts

Population Sample
Regression functions β0 + β1Xi β̂0 + β̂1Xi

Parameters β0, β1 β̂0, β̂1
Errors vs residuals ui ûi
The regression model Yi = β0 + β1Xi + ui Yi = β̂0 + β̂1Xi + ûi
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The OLS Estimation Method for a Linear Regression Model

The OLS estimates of the relationship between test scores
and the student-teacher ratio

TestScore = β0 + β1ClassSize + OtherFactors

Let’s first do some simple exploratory analysis before a regression
analysis.
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The OLS Estimation Method for a Linear Regression Model

Basic summary statistics

Some commonly used summary statistics are computed, including the
mean, standard deviation, median, minimum, maximum, and quantiles
(percentiles), etc.

Table: Summary Of distributions of student-teacher ratios and test scores

Average S.t.d. 25% 50% 75%
TestScore 654.16 19.05 640.05 654.45 666.66
STR 19.64 1.89 18.58 19.72 20.87
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The OLS Estimation Method for a Linear Regression Model

Scatterplot

The correlation coefficient between the two variables is -0.23.
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The OLS Estimation Method for a Linear Regression Model

Regression analysis

̂TestScore = 698.93− 2.28× STR
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The OLS Estimation Method for a Linear Regression Model

Interpretation of the estimated coefficients

What does the slope tell us?
How large is the effect actually?
What does the intercept mean?
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The Algebraic Properties of the OLS Estimator

The algebraic properties of the ols estimator

Let’s first look at some of the algebraic properties of the OLS
estimators.
These properties hold regardless of any statistical assumptions.
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The Algebraic Properties of the OLS Estimator

TSS, ESS, and SSR

From Yi = Ŷi + ûi , we can define
The total sum of squares: TSS =

∑n
i=1(Yi − Y )2

The explained sum of squares: ESS =
∑n

i=1(Ŷi − Y )2

The sum of squared residuals: SSR =
∑n

i=1(Yi − Ŷi )
2 =

∑n
i=1 û

2
i

The "deviation from the mean" form is only valid when an intercept is
included in the regression model.

Zheng Tian Lecture 6: Linear Regression with One Regressor 38 / 65



The Algebraic Properties of the OLS Estimator

Some algebraic properties among ûi , Ŷi , and Yi

n∑
i=1

ûi = 0 (12)

1
n

n∑
i=1

Ŷi = Y (13)

n∑
i=1

ûiXi = 0 (14)

TSS = ESS + SSR (15)
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The Algebraic Properties of the OLS Estimator

Proof of
∑n

i=1 ûi = 0

ûi = Yi − β̂0 − β̂1Xi = (Yi − Y )− β̂1(Xi − X )

n∑
i=1

ûi =
n∑

i=1

(Yi − Y )− β̂1

n∑
i=1

(Xi − X ) = 0
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The Algebraic Properties of the OLS Estimator

Proof of 1
n

∑n
i=1 Ŷi = Y

Note that Yi = Ŷi + ûi . So

n∑
i=1

Yi =
n∑

i=1

Ŷi +
n∑

i=1

ûi =
n∑

i=1

Ŷi

It follows that Ŷ = (1/n)
∑n

i=1 Ŷi = Y .
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The Algebraic Properties of the OLS Estimator

Proof of
∑n

i=1 ûiXi = 0

n∑
i=1

ûiXi

=
n∑

i=1

ûi (Xi − X )

=
n∑

i=1

[
(Yi − Y )− β̂1(Xi − X )

]
(Xi − X )

=
n∑

i=1

(Xi − X )(Yi − Y )− β̂1

n∑
i=1

(Xi − X )2 = 0
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The Algebraic Properties of the OLS Estimator

Proof of TSS = ESS + SSR

TSS =
n∑

i=1

(Yi − Y )2 =
n∑

i=1

(Yi − Ŷi + Ŷi − Y )2

=
n∑

i=1

(Yi − Ŷi )
2 +

n∑
i=1

(Ŷi − Y )2 + 2
n∑

i=1

(Yi − Ŷi )(Ŷi − Y )

= SSR + ESS + 2
n∑

i=1

ûi Ŷi

= SSR + ESS + 2
n∑

i=1

ûi (β̂0 + β̂1Xi )

= SSR + ESS
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Measures of Fit

Goodness of Fit: R2

R2 =
ESS

TSS
= 1− SSR

TSS
(16)

R2 is often called the coefficient of determination.
It indicates the proportion of the variance in the dependent variable
that is predictable from the independent variable(s).
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Measures of Fit

R2 ∈ [0, 1]

R2 = 0 when β̂1 = 0.

β̂1 = 0⇒ Yi = β̂0 + ûi ⇒ Ŷi = Y = β̂0

⇒ ESS =
n∑
i

(Ŷi − Y )2 = 0⇒ R2 = 0

R2 = 1 when ûi = 0 for all i = 1, . . . , n.

ûi = 0⇒ SSR =
n∑
i

û2
i = 0⇒ R2 = 1
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Measures of Fit

R2 = r 2XY

rXY is the sample correlation coefficient

rXY =
SXY
SXSY

=

∑n
i (Xi − X )(Yi − Y )[∑n

i (Xi − X )2
∑n

i (Yi − Y )2
]1/2
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Measures of Fit

R2 = r 2XY (cont’d)

ESS =
n∑

i=1

(Ŷi − Y )2 =
n∑

i=1

(β̂0 + β̂1Xi − Y )2

=
n∑

i=1

(Y − β̂1X + β̂1Xi − Y )2

=
n∑

i=1

[
β̂1(Xi − X )

]2
= β̂2

1

n∑
i=1

(Xi − X )2

=

[∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2

]2 n∑
i=1

(Xi − X )2

=

[∑n
i=1(Xi − X )(Yi − Y )

]2∑n
i=1(Xi − X )2
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Measures of Fit

R2 = r 2XY (cont’d)

It follows that

R2 =
ESS

TSS
=

[∑n
i=1(Xi − X )(Yi − Y )

]2∑n
i=1(Xi − X )2

∑n
i=1(Yi − Y )2

= r2
XY

Note: This property holds only for the linear regression model with
one regressor and an intercept.
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Measures of Fit

The use of R2

R2 is usually the first statistics that we look at for judging how well
the regression model fits the data.
However, we cannot merely rely on R2 for judge whether the
regression model is "good" or "bad".
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Measures of Fit

The standard error of regression (SER) as a measure of fit

SER =

√√√√ 1
n − 2

n∑
i=1

û2
i = s (17)

SER has the same unit of ui , which are the unit of Yi .
SER measures the average “size” of the OLS residual.
The root mean squared error (RMSE) is closely related to the SER:

RMSE =

√√√√1
n

n∑
i=2

û2
i

As n→∞, SER = RMSE .
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Measures of Fit

R2 and SER for the application of test scores v.s. class sizes

In the application of test scores v.s. class sizes, R2 is 0.051 or 5.1%,
which implies that the regressor STR explains only 5.1% of the
variance of the dependent variable TestScore.
SER is 18.6, which means that standard deviation of the regression
residuals is 18.6 points on the test.
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The Least Squares Assumptions

Assumption 1: The conditional mean of ui given Xi is zero

E (ui |Xi ) = 0 (18)

If the equation above is satisfied, then Xi is called exogenous.
This assumption can be stated a little stronger as E (u|X = x) = 0 for
any value x , that is E (ui |X1, . . . ,Xn) = 0.
It follows that E (u) = E (E (u|X )) = E (0) = 0.
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The Least Squares Assumptions

An illustration of Assumption 1

Figure: An illustration of E (u|X = x) = 0
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The Least Squares Assumptions

Correlation and conditional mean

E (ui |Xi ) = 0⇒ Cov(ui ,Xi ) = 0

A simple proof:

Cov(ui ,Xi ) = E (uiXi )− E (ui )E (Xi )

= E (XiE (ui |Xi ))− 0 · E (Xi )

= 0

where the law of iterated expectation is used twice at the second
equality.
It follows that

Cov(ui ,Xi ) 6= 0⇒ E (ui |Xi ) 6= 0
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The Least Squares Assumptions

Assumption 2: (Xi ,Yi) for i = 1, . . . , n are i.i.d.

Each pair of X and Y , i.e., (Xi ,Yi ) for i = 1, . . . , n, is selected
randomly from the same joint distribution of X and Y .
The cases that may violate of the i.i.d. assumption:

Time series data, Cov(Yt ,Yt−1) 6= 0. Serial correlation problem.
Spatial data, Cov(Yr ,Ys) 6= 0, where s and r refer to two neighboring
regions. Spatial correlation problem.
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The Least Squares Assumptions

Assumption 3: large outliers are unlikely

0 < E (X 4
i ) <∞ and 0 < E (Y 4

i ) <∞

A large outlier is an extreme value of X or Y .
On a technical level, if X and Y are bounded, then they have finite
fourth moments, i.e., finite kurtosis.
The essence of this assumption is to say that a large outlier can
strongly influence the results. So we need to rule out large outliers in
estimation.
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The Least Squares Assumptions

The influential observations and the leverage effects

Figure: How an outlier can influence the OLS estimates
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Sampling Distribution of the OLS Estimators

Unbiasedness

The randomness of β̂0 and β̂1

Since (Xi ,Yi ) for i = 1, . . . , n are randomly drawn from a population,
different draws can render different estimates, giving rise to the
randomness of β̂0 and β̂1.

The unbiasedness of β̂0 and β̂1

Let the true values of the intercept and the slope be β0 and β1. Based
on the least squares assumption #1: E (ui |Xi ) = 0

E (β̂0) = β0 and E (β̂1) = β1
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Sampling Distribution of the OLS Estimators

Show that β̂1 is unbiased

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2

Given the random samples (Xi ,Yi ) for i = 1, . . . , n, from

Yi = β0 + β1Xi + ui

We know that
Y = β0 + β1X + ū

It follows that
Yi − Y = β1(Xi − X ) + ui − u
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Sampling Distribution of the OLS Estimators

Show that β̂1 is unbiased (cont’d)

The numerator in β̂1 is∑
i

(Xi − X )(Yi − Y )

=
∑
i

(Xi − X )
[
β1(Xi − X ) + (ui − u)

]
= β1

∑
i

(Xi − X )2 +
∑
i

(Xi − X )ui − u
∑
i

(Xi − X )

= β1
∑
i

(Xi − X )2 +
∑
i

(Xi − X )ui

In the second equality, we use the fact that
∑

i (Xi − X ) = 0.
Note that although we know from the first OLS assumption,
E (ui ) = 0, we cannot guarantee that ū = 0 since u1, . . . , un are simply
random draws of ui .
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Sampling Distribution of the OLS Estimators

Show that β̂1 is unbiased (cont’d)

β̂1 = β1 +
1
n

∑
i (Xi − X )ui

1
n

∑
i (Xi − X )2

(19)

Then

E (β̂1|X1, . . . ,Xn) = β1 + E

{[
1
n

∑
i (Xi − X )ui

1
n

∑
i (Xi − X )2

]
| X1, . . . ,Xn

}

= β1 +
1
n

∑
i (Xi − X )E (ui |X1, . . . ,Xn)

1
n

∑
i (Xi − X )2

= β1 (by assumption 1)
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Sampling Distribution of the OLS Estimators

Show that β̂1 is unbiased (cont’d)

It follows that

E (β̂1) = E (E (β̂1|X1, . . . ,Xn)) = β1

Therefore, β̂1 is an unbiased estimator of β1.
The proof of unbiasedness of β̂0 is left for exercise.
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Sampling Distribution of the OLS Estimators

The consistency of β̂0 and β̂1

β̂ is said to be a consistent estimator of β if as n goes to infinity, β̂ is
in probability close to β, which can be denoted as n→∞, β̂ p−→ β.
Recall the law of large number states that for random i.i.d. samples
x1, . . . , xn, if E (xi ) = µ and Var(xi ) <∞, then x̄

p−→ µ as n→∞.

Then we can show that n→∞, β̂
p−→ β, i.e., β̂1 is a consistent

estimator of β1.
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Sampling Distribution of the OLS Estimators

The asymptotic normal distribution of β̂1

Recall the central limit theory states that if X1, . . . ,Xn with the mean
µ and the variance 0 < σ2 <∞. Then,

1
n

∑
i

Xi
d−→ N(µ,

σ2

n
)

We can prove that β̂1 is asymptotically normally distributed as

β̂1
d−→ N

(
β1, σ

2
β̂1

)
where

σ2
β̂1

=
1
n

Var
(
(Xi − X )ui

)
Var(Xi )2

As Var(Xi ) increases, Var(β̂1) decreases.
As Var(ui ) increases, Var(β̂1) increases.
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Sampling Distribution of the OLS Estimators

The asymptotic normal distribution of β̂0

Similarly, we can show that

β̂0
d−→ N(β0, σ

2
β̂0

)

where

σ2
β̂0

=
1
n

Var(Hiui )(
E (H2

i )
)2 , and Hi = 1−

(
µX

E (X 2
i )

)
Xi
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