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1 Introduction

This lecture introduces a linear regression model with one regressor called a simple linear re-
gression model. We will learn the ordinary least squares (OLS) method to estimate a simple
linear regression model, discuss the algebraic and statistical properties of the OLS estimator,
introduce two measures of goodness of fit, and bring up three least squares assumptions for a
linear regression model. As an example, we apply the OLS estimation method to a linear model
of test scores and class sizes in California school districts.

This lecture lays out foundations for all lectures to come. Although in practice we seldom use a
linear regression model with only one regressor, the essential principles of the OLS estimation
method and hypothesis testing are the same for a linear regression model with multiple regressors.
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2 The Linear Regression Model

2.1 What is regression?

Definition of regress in Merriam-Webster’s dictionary

Merriam-Webster gives the following definition of the word "regress":

1. An act or the privilege of going or coming back

2. Movement backward to a previous and especially worse or more primitive state or condition

3. The act of reasoning backward

The meaning of regression in statistics?

In statistical modeling, regression analysis is a statistical process for estimating the relation-
ships among variables.1 Specifically, most regression analysis focus on the conditional mean
of the dependent variable given the independent variables, which is a function of the values of
independent variables.

A very simple functional form of a conditional expectation is a linear function. That is, we can
model the conditional mean as follows,

E(Y | X = x) = f(x) = β0 + β1x (1)

Equation 1 is called a simple linear regression function.

2.2 An example: Test scores versus class size

Let’s go back to the example of California school districts, introduced in Lecture 1.

Research question:

The research question of this application is: Can reducing class size increase students’ test
scores?

How can we answer the question?

• We randomly choose 42 students and divide them into two classes, with one having 20
students and another having 22. And they are taught with the same subject and by the
same teachers.

1Wikipedia, the free encyclopedia. Regression analysis. Retrieved from https://en.wikipedia.org/wiki/
Regression_analysis
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• Randomization ensures that it is the difference in class sizes of the two classes that is the
only factor affecting test scores.

• After a test for both classes, we then compute the average test scores that can be expressed
as,

E(TestScore|ClassSize = 20)

E(TestScore|ClassSize = 22)

• Then the effect of class size on test scores is the difference in the conditional means, i.e.,

E(TestScore|ClassSize = 20)− E(TestScore|ClassSize = 22)

• If the difference is large enough, we can say that reducing class can improve students’ test
performance.

A simple linear regression model of test scores v.s. class size

As mentioned above, a simple linear regression function can be used to describe the relationship
between test scores and class sizes. Since it regards the association between these two variable for
the whole population, we call this regression function as the population regression function
or the population regression line, taking the following form,

E(TestScore|ClassSzie) = β0 + β1ClassSize (2)

By calculating the conditional expectation, some other factors, apart from class sizes, are left
out of the population regression function. Although these factors may also influence test scores,
they are either unimportant in your reasoning or unable to be measured. We can lump all these
factors into a single term, and set up a simple linear regression model as follows,

TestScore = β0 + β1ClassSize+OtherFactors (3)

If we assume E(OtherFactors|ClassSize) = 0, then the simple linear regression model (Eq. 3)
becomes the population regression line (Eq. 2).

A distinction between the population regression function and the population re-
gression model

Note that here we have two concepts: the population regression function and the population
regression model. What’s their difference? Simply put,
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• A population regression function gives us a deterministic relation between class size and
the expectation of test scores. That is, when we have a value of class size and know the
values of β0 and β1, there is one and only one expected value of test scores associated
with this class size. However, we cannot compute the exact value of the test score of a
particular observation.

• A population regression model, by including other factors, gives us a complete description
of a data generating process (DGP). That is, when we have all the values of class sizes
and other factors and know β0 and β1, we can generate all the values of test scores. Also,
when we consider other factors as a random variable, the association between test scores
and class size is not deterministic, depending on the value of other factors.

An interpretation of the population regression model

Now we have set up the simple linear regression model,

TestScore = β0 + β1ClassSize+OtherFactors

What is β1 and β0 represent in the model?

• Interpret β1

Let’s first look at β1. When we hold other factors constant, the only reason for a change
in test scores is a change in class size. Denote ∆TestScore and ∆ClassSize to be their
respective change. According to the above regression model, holding other factors constant,
we have

∆TestScore = β1∆ClassSize

where β0 is removed because it is also a constant. Then, we get

β1 =
∆TestScore

∆ClassSize

That is, β1 measures the change in the test score resulting from a one-unit change in
the class size. When TestScore and ClassSize are two continuous variable, we can write
β1 as

β1 =
dTestScore

dClassSize

Hence, we often call β1 as the marginal effect of the class size on the test score.

The phrase of "holding other factors constant" is important. Without it, we cannot dis-
entangle the effect of class sizes on test scores from other factors. "Holding other things
constant" is often expressed as the notion of ceteris paribus.

• Interpret β0

β0 is the intercept in the model. Sometimes it bears real meanings, but sometimes it
merely presents as an intercept. In this regression model, β0 is the test score when the
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class size and other factors are all zero, which is obviously nonsensical. Thus, β0 does not
have a real meaning in this model, and it just determines where the population regression
line intersects the Y axis.

2.3 The general linear regression model

Let’s generalize test scores and class sizes to be two random variables Y and X. For both, there
are n observations so that each observation i = 1, 2, 3, . . . is associated with a pair of values of
(Xi, Yi).

Then a simple linear regression model that associates Y with X is

Yi = β0 + β1Xi + ui, for i = 1, . . . , n (4)

• Yi is called the dependent variable, the regressand, or the LHS (left-hand side) variable.

• Xi is called the independent variable, the regressor, or the RHS (right-hand side) variable.

• β0 is the intercept, or the constant term. It can either have economic meaning or have
merely mathematical sense, which determines the level of the regression line, i.e., the point
of intersection with the Y axis.

• β1 is the slope of the population regression line. Since β1 = dYi/dXi, it is the marginal
effect of X on Y . That is, holding other things constant, one unit change in X will make
Y change by β1 units.

• ui is the error term. ui = Yi − (β0 + β1Xi) incorporates all the other factors besides X
that determine the value of Y .

• β0 +β1Xi represents the population regression function(or the population regression line).

2.4 An graphical illustration of a linear regression model

The relationship between the data points, the population regression line, and the errors (other
factors) are illustrated in Figure 1.

3 The OLS Estimation Method for a Linear Regression Model

3.1 The intuition for the OLS and minimization

The most commonly used method to estimate a linear regression model, like Equation 4, is the
ordinary least squares (OLS) estimation.

Let’s explain the basic idea of the OLS by dissecting its name.

5



Figure 1: The Population Regression Line

Ordinary It means that the OLS estimator is a very basic method, from which we may derive
some variations of the OLS estimator, such as the weighted least squares (WLS), and the
generalized least squares (GLS).

Least It means that the OLS estimator tries to minimize something. The "something" is the
mistakes we make when we try to guess (estimate) the values of the parameters in the
model. From Equation 4, if our guess for β0 and β1 is b0 and b1, then the mistake of our
guess is ûi = Yi − b0 − b1Xi.

Squares It represent the actual thing (a quantity) that we minimize. The OLS does not attempt
to minimize each ûi but to minimize the sum of the squared mistakes,

∑n
i=1 û

2
i . Taking

square is to avoid possible offsetting between positive and negative values of ûi in
∑

i ûi.

3.2 The OLS estimators for β0 and β1

Let b0 and b1 be some estimators of β0 and β1, respectively. 2 Then, the OLS estimator is the
solution to the following minimization problem.

min
b0,b1

S(b0, b1) =

n∑
i=1

û2i =

n∑
i=1

(Yi − b0 − b1Xi)
2 (5)

2Recall that an estimator is a function of a sample of data. An estimate is the numerical value of the
estimator when it is computed using data from a sample.
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where S(b0, b1) is a function of b0 and b1, measuring the sum of the squared prediction mistakes
over all n observation.

The mathematical derivation of the OLS estimators for β0 and β1

We solve the problem by taking the derivative of S(b0, b1) with respect to b0 and b1, respectively.
Suppose b∗0 = β̂0 and b∗1 = β̂1 are the solution to the minimization problem. Then the first order
conditions evaluated at (β̂0, β̂1) are

∂S

∂b0
(β̂0, β̂1) =

n∑
i=1

(−2)(Yi − β̂0 − β̂1Xi) = 0 (6)

∂S

∂b1
(β̂0, β̂1) =

n∑
i=1

(−2)(Yi − β̂0 − β̂1Xi)Xi = 0 (7)

Rearranging Equation 6, we get

n∑
i=1

Yi − nβ̂0 − β̂1
n∑
i=1

Xi = 0

β̂0 =
1

n

n∑
i=1

Yi −
β̂1
n

n∑
i=1

Xi = Y − β̂1X (8)

Rearranging Equation 7 and plugging Equation 8, we get

n∑
i=1

XiYi − β̂0
n∑
i=1

Xi − β̂1
n∑
i=1

X2
i = 0

n∑
i=1

XiYi −
1

n

n∑
i=1

Xi

n∑
i=1

Yi + β̂1
1

n

(
n∑
i=1

Xi

)2

− β̂1
n∑
i=1

X2
i = 0

β̂1 =
n
∑n

i=1XiYi −
∑n

i=1Xi
∑n

i=1 Yi
n
∑n

i=1X
2
i − (

∑n
i=1Xi)2

(9)

For the numerator in Equation 9, we can show the following∑
i

(Xi −X)(Yi − Y ) =
∑
i

XiYi −X
∑
i

Yi − Y
∑
i

Xi +
∑
i

XY

=
∑
i

XiYi − 2nXY + nXY

=
∑
i

XiYi − nXY

=
1

n

(
n
∑
i

XiYi −
∑
i

Xi

∑
i

Yi

)

Similarly, we can show that
∑

i(Xi −X)2 = 1
n

[
n
∑

iX
2
i − (

∑
iXi)

2
]
.
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β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

Since we know that the sample covariance of X and Y is sXY = 1
n−1

∑n
i=1(Xi−X)(Yi−Y ) and

the sample variance of X is s2X = 1
n−1

∑n
i=1(Xi −X)2, the equation above can also be written

as
β̂1 =

sXY
s2X

In sum, solving the minimization problem (Equation 5), we obtain the OLS estimators for β0
and β1 as

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
=
sXY
s2X

(10)

β̂0 = Y − β̂1X (11)

3.3 The predicted values, residuals, and the sample regression line

The predicted values

• After obtaining the estimators, we can compute the predicted values Ŷi for i = 1, . . . , n

Ŷi = β̂0 + β̂1Xi

• The line represented by the above equation is called the sample regression line.

• The sample average point (X,Y ) is always on the sample regression line because, from
Equation 11, we have

Y = β̂0 + β̂1X

The residuals

• The residuals ûi for i = 1, . . . , n are

ûi = Yi − Ŷi

• The residuals are the difference between the observed values of Yi and its predicted value.
That is, they are the actual prediction errors we make when using the OLS estimators.
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3.4 A comparison between the population regression model and the sample
counterparts

We should pause here to make a clear distinction between the population regression function
and model and their counterparts.

The population regression function versus the sample regression function

• The population regression function is a function between the conditional mean of Y given
X and X, that is,

E(Y | X) = β0 + β1Xi

where β0 and β1 are the population parameters.

• The sample regression function is a function between the predicted value and X, that is,

Ŷi = β̂0 + β̂1Xi

The regression errors versus residuals

• The error term, ui, in the population regression model represents the other factors that
the population regression function does not take into account. It is the difference between
Yi and E(Yi | Xi). Thus, we have

Yi = β0 + β1Xi + ui

• The residuals, ûi, represent the actual mistakes we make with a set of estimators. It is the
difference between Yi and its predicted value Ŷi. Thus, we have

Yi = β̂0 + β̂1Xi + ûi

Table 1: A comparison between the population regression and its sample counterparts
Population Sample

Regression functions β0 + β1Xi β̂0 + β̂1Xi

Parameters β0, β1 β̂0, β̂1
Errors vs residuals ui ûi
The regression model Yi = β0 + β1Xi + ui Yi = β̂0 + β̂1Xi + ûi

3.5 The OLS estimates of the relationship between test scores and the student-
teacher ratio

Let’s come back to the application of test scores versus the student-teacher ratios in California
school districts. The goal is to estimate the effect of class sizes, measured by the student-teacher
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ratios, on test scores. Before setting up a formal regression model, it is always a good practice
to glance over the data using some exploratory data analysis techniques.

Exploratory analysis

• Basic summary statistics

We first need to compute basic summary statistics to see the sample distribution of the
data. Some commonly used summary statistics include mean, standard deviation, median,
minimum, maximum, and quantile (percentile), etc. Table 2 summarizes the distribution
of test scores and class sizes for the sample.

Table 2: Summary Of distributions of student-teacher ratios and test scores
Average S.t.d. 10% 25% 40% 50% 60% 75% 90%

TestScore 654.16 19.05 630.4 640.05 649.07 654.45 659.4 666.66 678.86
STR 19.64 1.89 17.35 18.58 19.27 19.72 20.08 20.87 21.87

• Scatterplot

A scatterplot visualizes the relationship between two variables straightforwardly, which is
helpful for us to decide what a functional form a regression model should properly take.
Figure 2 shows that test scores and student-teacher ratios may be negatively related. The
correlation coefficient between the two variables is -0.23, verifying the existence of a weak
negative relationship.

Figure 2: The scatterplot between student-teacher ratios and test scores
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Regression analysis

After exploratory analysis, we can estimate the linear model. Although the formula of computing
β1 and β0 (Equations 10 and 11) seems complicated, the practical estimation procedure is
simplified by using computer software, like R. For now, let’s simply present the estimation
results in the following equation,

̂TestScore = 698.93− 2.28× STR (12)

We can draw the sample regression line represented by Equation 12 in the scatterplot to eyeball
how well the regression model fits the data.

Figure 3: The estimated regression line for the California data

Interpretation of the estimated coefficients

Upon obtaining the coefficient estimates, what we need to do next includes hypothesis tests,
model specification tests, robustness (or sensitivity) test, and interpretation. Let’s first see how
to correctly interpret the estimation results.

• Our main interest is in the slope that tell us how much a unit change in student-teacher
ratios will cause test scores to change. The slope of -2.28 means that an increase in the
student-teacher ratio by one student per class is, on average, associated with a decline in
district-wide test scores by 2.28 points on the test.

• The intercept literally means that if the student-teacher ratio is zero, the average district-
wide test scores will be 698.9. However, it is nonsense for having some positive test scores
when the student-teacher ratio is zero. Therefore, the intercept term in this case merely
serves as determining the level of the sample regression line.
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• The mere number of -2.28 really does not make much sense for the readers of your research.
We have to put it into the context of California school district to avoid ridiculous results
even though the estimation itself is correct. (Read the discussion in the paragraphs in
Page 117.)

4 Algebraic Properties of the OLS Estimator

The OLS estimator has many good properties. Let’s first look at some of its algebraic properties.
That is, these properties are the results of the minimization problem in Equation (5), regardless
of any statistical assumptions we will introduce in the next sections.

4.1 TSS, ESS, and SSR

• From Yi = Ŷi + ûi, we can define

– The total sum of squares: TSS =
∑n

i=1(Yi − Y )2

– The explained sum of squares: ESS =
∑n

i=1(Ŷi − Y )2

– The sum of squared residuals: SSR =
∑n

i=1(Yi − Ŷi)2 =
∑n

i=1 û
2
i

Note that TSS, ESS, and SSR all take the form of "deviation from the mean". This form is only
valid when an intercept is included in the regression model.3

4.2 Some algebraic properties among ûi, Ŷi, Yi, and Xi

The OLS residuals and the predicted values satisfy the following equations:4

n∑
i=1

ûi = 0 (13)

1

n

n∑
i=1

Ŷi = Y (14)

n∑
i=1

ûiXi = 0 (15)

TSS = ESS + SSR (16)
3We are not going to prove this because it involves higher level knowledge of linear algebra. You can estimate

a linear regression model of Yi = β1Xi + ui, for which TSS is simply
∑n

i Y
2
i and ESS is

∑n
i Ŷ

2
i . Also, for this

model,
∑n

i ûi 6= 0.
4Equation 13 holds only for a linear regression model with an intercept, but Equation 15 holds regardless of

the presence of an intercept.
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4.3 The proof of these properties

Here, I just prove Equation 16. The proofs for the other equations above are in Appendix 4.3
in the textbook.

Proof of Equation 13

From Equation 11 we can write the OLS residuals as

ûi = Yi − β̂0 − β̂1Xi = (Yi − Y )− β̂1(Xi −X)

Thus
n∑
i=1

ûi =

n∑
i=1

(Yi − Y )− β̂1
n∑
i=1

(Xi −X)

By definition of the sample average, we have

n∑
i=1

(Yi − Y ) = 0 and
n∑
i=1

(Xi −X) = 0

It follows that
∑n

i=1 ûi = 0.

Proof of Equation 14

Note that Yi = Ŷi + ûi. So
n∑
i=1

Yi =
n∑
i=1

Ŷi +
n∑
i=1

ûi =
n∑
i=1

Ŷi

It follows that Ŷ = (1/n)
∑n

i=1 Ŷi = Y .

Proof of Equation 15

∑n
i=1 ûi = 0 implies that

n∑
i=1

ûiXi

=

n∑
i=1

ûi(Xi −X)

=
n∑
i=1

[
(Yi − Y )− β̂1(Xi −X)

]
(Xi −X)

=
n∑
i=1

(Xi −X)(Yi − Y )− β̂1
n∑
i=1

(Xi −X)2 = 0
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Proof of TSS = ESS + SSR

TSS =

n∑
i=1

(Yi − Y )2 =

n∑
i=1

(Yi − Ŷi + Ŷi − Y )2

=

n∑
i=1

(Yi − Ŷi)2 +

n∑
i=1

(Ŷi − Y )2 + 2

n∑
i=1

(Yi − Ŷi)(Ŷi − Y )

= SSR+ ESS + 2

n∑
i=1

ûiŶi

= SSR+ ESS + 2

n∑
i=1

ûi(β̂0 + β̂1Xi)

= SSR+ ESS + 2(β̂0

n∑
i=1

ûi + β̂1

n∑
i=1

ûiXi)

= SSR+ ESS

where the final equality follows from Equations 13 and 15.

5 Measures of Fit

5.1 Goodness of Fit: R2

R2 is one of the commonly used measures for how well the OLS regression line fits the data.
R2 is the fraction of the sample variance of Yi explained by Xi. The sample variance can be
represented with TSS and the part of sample variance explained by X can be represented by
ESS. Therefore, mathematically, we can define R2 as

R2 =
ESS

TSS
= 1− SSR

TSS
(17)

R2 is often called the coefficient of determination. It indicates the proportion of the variance in
the dependent variable that is predictable from the independent variable(s).

Properties of R2

• R2 ∈ [0, 1]

R2 = 0 when β̂1 = 0, that is, X cannot explain the variance in Y .

β̂1 = 0⇒ Yi = β̂0 + ûi ⇒ Ŷi = Y = β̂0 ⇒ ESS =

n∑
i

(Ŷi − Y )2 = 0⇒ R2 = 0

R2 = 1 when ûi = 0 for all i = 1, . . . , n, that is, the regression line fits all the sample data
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perfectly.

ûi = 0⇒ SSR =
n∑
i

û2i = 0⇒ R2 = 1

• R2 = r2XY

rXY is the sample correlation coefficient, that is,

rXY =
SXY
SXSY

=

∑n
i (Xi −X)(Yi − Y )[∑n

i (Xi −X)2
∑n

i (Yi − Y )2
]1/2

To prove R2 = r2XY , let’s look at SSR.

ESS =
n∑
i=1

(Ŷi − Y )2 =
n∑
i=1

(β̂0 + β̂1Xi − Y )2

=
n∑
i=1

(Y − β̂1X + β̂1Xi − Y )2

=
n∑
i=1

[
β̂1(Xi −X)

]2
= β̂21

n∑
i=1

(Xi −X)2

=

[∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

]2 n∑
i=1

(Xi −X)2

=

[∑n
i=1(Xi −X)(Yi − Y )

]2∑n
i=1(Xi −X)2

It follows that

R2 =
ESS

TSS
=

[∑n
i=1(Xi −X)(Yi − Y )

]2∑n
i=1(Xi −X)2

∑n
i=1(Yi − Y )2

= r2XY

Note: This property holds only for the linear regression model with one regressor and
an intercept.

The use of R2

• R2 is usually the first statistics that we look at for judging how well the regression model
fits the data.

• Most computer programs for econometrics and statistics report R2 in their estimation
results.

• However, we cannot merely rely on R2 for judge whether the regression model is "good"
or "bad". For that, we have to use some statistics that will be taught soon.
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5.2 The standard error of regression (SER) as a measure of fit

Like R2, the standard error of regression (SER) is another measure of fit for the OLS regression.

SER =

√√√√ 1

n− 2

n∑
i=1

û2i = s (18)

• SER has the same unit of ui, which are the unit of Yi.

• SER measures the average “size” of the OLS residual (the average “mistake” made by the
OLS regression line).

• The root mean squared error (RMSE) is closely related to the SER:

RMSE =

√√√√ 1

n

n∑
i=2

û2i

As n→∞, SER = RMSE.

5.3 R2 and SER for the application of test scores v.s. class sizes

• In the application of test scores v.s. class sizes, R2 is 0.051 or 5.1%, which implies that
the regressor STR explains only 5.1% of the variance of the dependent variable TestScore.

• SER is 18.6, which means that standard deviation of the regression residuals is 18.6 points
on the test. The magnitude of SER is so large that, in another way, shows that the simple
linear regression model does not fit the data well.

6 The Least Squares Assumptions

The last two sections regard the algebraic properties of the OLS estimators. Now let’s turn to
their statistical properties, which are built on the following assumptions.

6.1 Assumption 1: The conditional mean of ui given Xi is zero

E(ui|Xi) = 0 (19)

If Equation 19 is satisfied, then Xi is called exogenous. This assumption can be stated a little
stronger as E(u|X = x) = 0 for any value x, that is E(ui|X1, . . . , Xn) = 0.

Since E(u|X = x) = 0, it follows that E(u) = E(E(u|X)) = E(0) = 0. The unconditional mean
of u is also zero.
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• A benchmark for thinking about this assumption is to consider an ideal randomized con-
trolled experiment.

Because X is assigned randomly, all other individual characteristics – the things that make
up u – are distributed independently of X, so u and X are independent. Thus, in an ideal
randomized controlled experiment, E(u|X = x) = 0.

• In actual experiments, or with observational data, we will need to think hard about whether
E(u|X = x) = 0 holds.

Assumption 1 can be illustrated by Figure 4. The conditional mean, E(Y | X), of the conditional
density distribution, f(y | x), is vertically projected right on the population regression line
β0 + β1X because E(Y | X) = β0 + β1X + E(u | X) = β0 + β1X.

Figure 4: An illustration of E(u|X = x) = 0

• Correlation and conditional mean

E(ui|Xi) = 0⇒ Cov(ui, Xi) = 0

That is, the zero conditional mean of ui given Xi means that they are uncorrelated.

Cov(ui, Xi) = E(uiXi)− E(ui)E(Xi)

= E(XiE(ui|Xi))− 0 · E(Xi)

= 0

where the law of iterated expectation is used twice at the second equality.

It follows that Cov(ui, Xi) 6= 0⇒ E(ui|Xi) 6= 0.
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6.2 Assumption 2: (Xi, Yi) for i = 1, . . . , n are i.i.d.

• Each pair of X and Y , i.e., (Xi, Yi) for i = 1, . . . , n, is selected randomly from the same
joint distribution of X and Y .

• The cases that may violate of the i.i.d. assumption:

– Time series data, Cov(Yt, Yt−1) 6= 0. That is, when we try to regress Yt on Yt−1,
and if the current value Yt depends on Yt−1, which is very likely, the independence is
violated. We call this violation as serial correlation.

– Spatial data, Cov(Yr, Ys) 6= 0, where s and r refer to two neighboring regions. That
is, when we try to regress Yr on Ys, they may well be correlated because they are
adjacent. We call this violation as spatial correlation.

6.3 Assumption 3: large outliers are unlikely

0 < E(X4
i ) <∞ and 0 < E(Y 4

i ) <∞

• A large outlier is an extreme value of X or Y .

• On a technical level, if X and Y are bounded, then they have finite fourth moments, i.e.,
finite kurtosis.

• The essence of this assumption is to say that a large outlier can strongly influence the
results. So we need to rule out large outliers in estimation.

The influential observations and the leverage effects

• An outlier can be detected by a scatterplot. See Figure 5.

• There are also formal tests for the existence of the influential observations, some of which
are coded in econometric software, like R and Stata.

7 Sampling Distribution of the OLS Estimators

7.1 Unbiasedness and consistency

The unbiasedness of β̂0 and β̂1

• The randomness of β̂0 and β̂1

Since (Xi, Yi) for i = 1, . . . , n are randomly drawn from a population, different draws can
render different estimates, giving rise to the randomness of β̂0 and β̂1.
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Figure 5: How an outlier can influence the OLS estimates

• The unbiasedness of β̂0 and β̂1

Let the true values of the intercept and the slope be β0 and β1. Based on the least squares
assumption #1: E(ui|Xi) = 0

E(β̂0) = β0 and E(β̂1) = β1

• Show that β̂1 is unbiased

Let’s rewrite the formula of β̂1 here

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
(20)

Given the random samples (Xi, Yi) for i = 1, . . . , n, from Yi = β0 + β1Xi + ui, We know
that Y = β0 + β1X + ū. It follows that Yi − Y = β1(Xi −X) + ui − u, Plugging it in the
numerator in Equation (20). Then,∑

i

(Xi −X)(Yi − Y ) =
∑
i

(Xi −X)
[
β1(Xi −X) + (ui − u)

]
= β1

∑
i

(Xi −X)2 +
∑
i

(Xi −X)ui − u
∑
i

(Xi −X)

= β1
∑
i

(Xi −X)2 +
∑
i

(Xi −X)ui

In the second equality, we use the fact that
∑

i(Xi − X) = 0. Note that although we
know from the first OLS assumption, E(ui) = 0, we cannot guarantee that ū = 0 since
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u1, . . . , un are simply random draws of ui.

Substituting this expression in Equation (20) yields

β̂1 = β1 +
1
n

∑
i(Xi −X)ui

1
n

∑
i(Xi −X)2

(21)

We prove that β̂1 is conditionally unbiased, from which the unconditional unbiasedness
follows naturally.

E(β̂1|X1, . . . , Xn) = β1 + E

{[
1
n

∑
i(Xi −X)ui

1
n

∑
i(Xi −X)2

]
| X1, . . . , Xn

}

= β1 +
1
n

∑
i(Xi −X)E(ui|X1, . . . , Xn)

1
n

∑
i(Xi −X)2

= β1 (by assumption 1)

It follows that
E(β̂1) = E(E(β̂1|X1, . . . , Xn)) = β1

Therefore, β̂1 is an unbiased estimator of β1.

The proof of unbiasedness of β̂0 is left for exercise.

The consistency of β̂0 and β̂1

β̂ is said to be a consistent estimator of β if as n goes to infinity, β̂ is in probability close to β,
which can be denoted as n→∞, β̂ p−→ β, or simply as plimn→∞ β̂ = β.

And the law of large number states that for random i.i.d. samples x1, . . . , xn, if E(xi) = µ and
Var(xi) <∞, then plimn→∞

1
n

∑
i xi = µ.

Then we can show that plimn→∞ β̂1 = β1.

• A proof of consistency

The proof is not required to understand for this course. Therefore, you can
skip it when you first read the notes.

From Equation (21) we can have

plim
n→∞

(β̂1 − β1) = plim
n→∞

1
n

∑
i(Xi −X)ui

1
n

∑
i(Xi −X)2

=
plimn→∞

1
n

∑
i(Xi −X)ui

plimn→∞
1
n

∑
i(Xi −X)2

The denominator of the last equality is just a consistent estimator of the sample variance
of Xi, that is, plimn→∞

1
n

∑
i(Xi −X)2 = σ2X
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Now we need to focus on plimn→∞
1
n

∑
i(Xi −X)ui. To apply the law of large numbers,

we need to find the expectation of (Xi −X)ui. Given that E(Xiui) = E(E(Xiui|Xi)) =

E(XiE(ui|Xi)) = 0, we have

E((Xi −X)ui) = E(Xiui) +
1

n

∑
i

E(Xiui) = 0 + 0 = 0

So the variance of (Xi −X)ui can be expressed as

Var((Xi −X)ui) = E((X −X)2u2i )

= E(E((X −X)2u2i |X))

= E((X −X)2E(u2i |X))

= E((X −X)2σ2u) (by the extended assumption 4. See Chapter 17)

<∞ (by assumption 3)

Since E((Xi −X)ui) = 0, Var((Xi −X)ui) < ∞, and Xi, ui for i = 1, . . . , n are i.i.d, by
the law of large numbers, we have

plim
n→∞

1

n

∑
i

(Xi −X)ui = 0

Therefore, plimn→∞ β̂1 = β1.

Similarly, we can also prove that β̂0 is consistent, that is plimn→∞ β̂0 = β0.

7.2 The asymptotic normal distribution

The central limit theory states that if X1, . . . , Xn with the mean µ and the variance 0 < σ2 <∞.
Then, 1

n

∑
iXi

d−→ N(µ, σ
2

n ).

From the proof of consistency, we have already seen that E((Xi−X)ui) = 0, Var((Xi−X)ui) <

∞, and Xi, ui for i = 1, . . . , n are i.i.d. By the central limit theory, we know that

1

n

∑
i

(Xi −X)ui
d−→ N

(
0,

1

n
Var

(
(Xi −X)ui

))

It follows that from Equation (21) and the fact that plimn→∞
1
n

∑
i(Xi −X)2 = Var(Xi), β̂1 is

asymptotically normally distributed as

β̂1
d−→ N

(
β1, σ

2
β̂1

)
where

σ2
β̂1

=
1

n

Var
(
(Xi −X)ui

)
Var(Xi)2

(22)
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Similarly, we can show that β̂0
d−→ N(β0, σ

2
β̂0

), where

σ2
β̂0

=
1

n

Var(Hiui)(
E(H2

i )
)2 , and Hi = 1−

(
µX

E(X2
i )

)
Xi (23)

• As Var(Xi) increases, Var(β̂1) decreases.

• As Var(ui) increases, Var(β̂1) increases.

Figure 6: The Variance of β̂1 and the variance of Xi
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