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1 Getting Started with R

1.1 What is R?

R is a free software environment and programming language for statistical computing and graph-
ics. The website for the R project is https://www.r-project.org/.

A brief history of development of R

• It originated from Bell Laboratories in the 1970s, as the S language, from which the
commercial version S-Plus was developed in 1987.

• R was initially developed by Robert Gentleman and Ross Ihaka at the University of Auck-
land, New Zealand in 1996.

• Since its first release in 2000, the development of the R project has been tremendous in
the last two decades.

Why do we choose R other than other econometric software?

• It is open source, free to download.
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• It has a huge number of packages that can implement almost all state-of-art statistical
techniques.

• It has a powerful and flexible capabilities of making graphs.

• It is a programming language designed specifically for statistics, enabling you to accomplish
almost anything a programming language can do for statistics.

1.2 Installation

Install R

The installation files can be downloaded from https://mirrors.tuna.tsinghua.edu.cn/CRAN/.
You can download the installation files for Windows, OS X, and Linux(ubuntu).

Install RStudio

The base R comes with a simple Graphic User Interface (GUI). RStudio supplies with a more
user-friendly GUI and provides other powerful functionalities, such as writing dynamic docu-
ments with nitro and rmarkdown.

• RStudio can be downloaded from https://www.rstudio.com/products/rstudio/download/

• The window of RStudio looks like Figure 1

1.3 Packages

The R installation files install the core packages that support very basic functions. One of the
strength of R is that there are many contributed packages written by the huge community of R
users.

To install a contributed package, we use the command install.packages("names of packages").
After installing a package, we need to invoke it every time we use it by the command library(name

of a package). In this course, for example, we need to install a package called AER (Applied
Econometrics with R).

Type the following code in the "Console" window in RStudio.

# Install packages

install.packages("AER")

Upon typing this command, a window jumps up for you to choose a mirror. From the list, choose
China[Beijing]. R will automatically download and install this package from the server. Very
likely, when this is the first package you install in R, R will also download other packages on
which installing the AER package depends. In the console, you should see the following messages.
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Figure 1: The Window of RStudio

trying URL ’https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/macosx/mavericks/contrib/3.3/AER_1.2-5.tgz’

Content type ’application/octet-stream’ length 2442603 bytes (2.3 MB)

==================================================

downloaded 2.3 MB

The downloaded binary packages are in

/var/folders/rd/53x_sgqd3yj6wghsyyy4n0vh0000gn/T//RtmpF3tVDW/downloaded_packages

In RStudio, you can install packages from the "Tools" menu and click "Install Packages".

When we need to use the AER package, type library(AER) in the console. And we can check
whether this package is loaded using search().

# Load packages

library(AER)

# Check packages loaded

search()

[1] ".GlobalEnv" "package:foreign" "package:AER"

[4] "package:survival" "package:sandwich" "package:lmtest"

[7] "package:zoo" "package:car" "ESSR"

[10] "package:stats" "package:graphics" "package:grDevices"
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[13] "package:utils" "package:datasets" "package:methods"

[16] "Autoloads" "package:base"

It shows that besides the AER package, there are other packages in the "global" environment,
which are the core packages loaded automatically when opening R.

1.4 Help

• R has easy helping facilities. The help information of any function can be found by type
either help() or ?.

• If you cannot remember the accurate name of a function, you can even guess by using
help.search() or ?? or apropos().

• Any time you encounter a problem using R which cannot be solved by help command,
there are at least two places you can resort to.

– The mailing list of R: http://www.r-project.org/mail.html

– Google or bing: quite often you will get an answer to your question in the website of
http://stackoverflow.com/.

2 Basics

2.1 R as a calculator

Standard arithmetic operators

R supports the following arithmetic operators

+, -, *, /, ^, %%, %/%

Hence,

## R as a calculator ------------------------------

#+ Binary operations

1 + 2; 2*3; 2^3; 5/2;

5 %% 2 # get x mod y

5 %/% 2 # get the integer division

[1] 3

[1] 6

[1] 8

[1] 2.5

[1] 1
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[1] 2

Mathematical functions

R also have many built-in mathematical functions, such as, log(), exp(), sin(), sqrt(), min(),
etc.

# Use built-in functions

log(exp(sin(pi/2)^2) * exp(cos(pi/3)^2))

[1] 1.25

2.2 Vector operations

Vector is the basic unit in R, from which other data structures, for example, matrix, factor,
list, data.frame, are built upon.

Generate a vector

A vector can be generated by the function c(), which can also be used to concatenate two
vectors

## Vector operations ------------------------------

# Create a vector with c()

x <- c(0.3, 1.5, 7.3, 2)

y <- c(3, 2, 1)

z <- c(x, y)

z

[1] 0.3 1.5 7.3 2.0 3.0 2.0 1.0

The symbol <- is to assign a value to a variable. You can also use = to assign values, but <- is
more commonly used by convention and = is used within a function calling for assigning values
to the arguments of the function.

Note that by concatenating x and y, integers are converted to floating point numbers. That
means the elements in a vector must have the same mode (data types), including numeric,
character, and logical.

# Vectors with different data types

student.names <- c("John", "Mary", "Bob", "Ann")

student.male <- c(TRUE, FALSE, TRUE, FALSE)

student.age <- c(20, 19, 21, 20)
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class(student.names)

class(student.male)

class(student.age)

students <- c(student.names, student.male, student.age)

students

[1] "character"

[1] "logical"

[1] "numeric"

[1] "John" "Mary" "Bob" "Ann" "TRUE" "FALSE" "TRUE" "FALSE" "20"

[10] "19" "21" "20"

Patterned vectors

A vector can also be generated by the functions, like rep(), seq(), and :.

• seq() generates a vector by some patterns and a:b is a shorthand for seq(from=a, to=b,

by=1).

# Create a sequence

even <- seq(from = 2, to = 20, by = 2)

even

years <- 1995:2005

years

[1] 2 4 6 8 10 12 14 16 18 20

[1] 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

• rep() generates a vector by repeating some values

# Create repetition

ones <- rep(1, times = 10)

ones

rep13 <- rep(1:3, times = 3, each = 2)

rep13

[1] 1 1 1 1 1 1 1 1 1 1

[1] 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3

Vector operations

Arithmetic operators and mathematical functions can be applied to vector in an element-by-
element way in R.
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Let’s first draw random numbers for the uniform distribution x ∼ Uniform(0, 1). The length
of x is 10. We can use the length() function to check the length of a vector.

# Draw a random vector

x <- runif(10); x

length(x)

[1] 0.865327406 0.384586069 0.033214976 0.377298041 0.991853392 0.191534136

[7] 0.281390713 0.003944363 0.615192923 0.326255273

[1] 10

The arithmetic operations and built-in math functions are all applied for each element of a
vector.

2 * x + 3

log(x)

[1] 4.730655 3.769172 3.066430 3.754596 4.983707 3.383068 3.562781 3.007889

[9] 4.230386 3.652511

[1] -0.144647339 -0.955587668 -3.404754418 -0.974719845 -0.008179973

[6] -1.652689232 -1.268011138 -5.535467872 -0.485819365 -1.120075159

If two vectors with different lengths are computed within one operation, the elements of the
vector with a shorter length will be used in an iterated way. We must keep in mind this feature
of R, which in some cases may give rise to unintended results.

y <- runif(5)

x + y

[1] 1.7021802 0.9223989 0.4507015 1.3400343 1.3665239 1.0283869 0.8192036

[8] 0.4214308 1.5779292 0.7009257

Selecting elements in a vector

Element(s) in a vector can be selected by [position], in which position can be a vector
indicating the position of each element in a vector, a negative value to exclude an element with
the corresponding position, and a condition to select elements satisfying the condition.

# Selecting elements in a vector

x[1:5]

x[c(1, length(x))]

x[-4]

x[x > 0.5]

[1] 0.86532741 0.38458607 0.03321498 0.37729804 0.99185339

[1] 0.8653274 0.3262553

[1] 0.865327406 0.384586069 0.033214976 0.991853392 0.191534136 0.281390713
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[7] 0.003944363 0.615192923 0.326255273

[1] 0.8653274 0.9918534 0.6151929

Instead of selecting elements in a vector by their positions, we can also give each element a
particular name so that we can use their names to choose elements.

student.names

student.age

# Give elements names

names(student.age) <- student.names

student.age

student.age[c("John", "Bob")]

[1] "John" "Mary" "Bob" "Ann"

[1] 20 19 21 20

John Mary Bob Ann

20 19 21 20

John Bob

20 21

2.3 Matrices

Create a matrix

We can create a matrix with the matrix() function, in which the first argument is a vector. We
specify the two dimensions by the arguments of nrow and ncol. By default, matrix() arranges
all the elements of the vector in its first argument into a matrix by column. We can change it
by adding byrow=TRUE.

# Create a matrix

A <- matrix(1:12, nrow = 3, ncol = 4); A

matrix(1:12, nrow = 3, ncol = 4, byrow = TRUE)

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

We can also juxtapose vectors of the same length to create a matrix by cbind(), or stack over
vectors by rbind().

# Create a matrix by combining vectors
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a <- 1:4; b <- 2:5; c <- 3:6

cbind(a, b, c)

rbind(a, b, c)

a b c

[1,] 1 2 3

[2,] 2 3 4

[3,] 3 4 5

[4,] 4 5 6

[,1] [,2] [,3] [,4]

a 1 2 3 4

b 2 3 4 5

c 3 4 5 6

Like vectors, we can also give each row and each column in a matrix their specific names. Here
we use the function of paste() to combine two (character) vectors together to generate a new
character vector.

# Give names to rows and columns

rownames(A) <- paste("X", 1:3, sep = "")

colnames(A) <- paste("Y", 1:4, sep = "")

A

Y1 Y2 Y3 Y4

X1 1 4 7 10

X2 2 5 8 11

X3 3 6 9 12

Select elements

We select elements from a matrix using [rows, cols]. rows and cols are two vectors to set
the rows and columns of elements to be selected.

# Selecting elements in a matrix

A[1, 3]

A["X1", "Y3"]

A[1:3, c(2, 4)]

A[, 2]

A[3, ]

[1] 7

[1] 7

Y2 Y4

X1 4 10

X2 5 11
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X3 6 12

X1 X2 X3

4 5 6

Y1 Y2 Y3 Y4

3 6 9 12

Matrix operations

We can do all matrix operations that we have reviewed in Lecture 4.

• Transpose

t(A)

X1 X2 X3

Y1 1 2 3

Y2 4 5 6

Y3 7 8 9

Y4 10 11 12

• Matrix multiplication

There are two types of matrix multiplication. The * operator computes the element-
by-element multiplication (Hadamard product), while the operator %*% computes matrix
multiplication in the form of inner products of row and column vectors.

When we do either type of matrix multiplication, we should always check whether the two
matrices are conformable to do so. If not, R will give you an error message. We can use
the function dim() to see the dimensions of a matrix.

B <- matrix(1:8, nrow = 4)

A * B # element-by-element multiplication

dim(A)

dim(B)

Error in A * B : non-conformable arrays

[1] 3 4

[1] 4 2

A %*% B

[,1] [,2]

X1 70 158

X2 80 184

X3 90 210

• Inverse matrix
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We use the function solve(A) to get the inverse matrix of A.

A <- matrix(rnorm(9), nrow = 3)

B <- solve(A)

A %*% B

[,1] [,2] [,3]

[1,] 1.000000e+00 0 0

[2,] -1.110223e-16 1 0

[3,] 9.020562e-17 0 1

Notice that the resultant matrix is not exactly an identity matrix, in which some off-
diagonal elements are very small non-zero numbers. These are the rounding errors stem-
ming from conversion between binary bits (a sequence of 0 and 1) to floating point numbers.

solve() can also be used to solve a system of linear equations, such as,

3x+ 2y − z = 1

2x− 2y + 4z = −2

−x+
1

2
y − z = 0

to which the solution is x = 1, y = −2, z = −2.

The system of equations can be written in matrix notation as 3 2 −1
2 −2 4

−1 1
2 −1


xy
z

 =

 1

−2
0


A <- cbind(c(3, 2, -1),

c(2, -2, 0.5),

c(-1, 4, -1))

B <- c(1, -2, 0)

solve(A, B)

[1] 1 -2 -2

Diagonal matrix

The function diag() can create a diagonal matrix.

diag(1:3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 2 0
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[3,] 0 0 3

An identity matrix is a special case of a diagonal matrix.

diag(3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

Higher-dimensional array

Vectors and matrices are special cases of arrays. The former is one-dimensional array, and the
latter is two-dimensional. We can also create higher-dimensional arrays by array().

array(1:18, dim = c(3, 3, 2))

, , 1

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

, , 2

[,1] [,2] [,3]

[1,] 10 13 16

[2,] 11 14 17

[3,] 12 15 18

2.4 List

Vectors, matrices, and arrays are all the ways of R to store data. However, their limitation
is obvious, all elements in a vector or a matrix must be of the same type. To overcome this
limitation, R uses another way to store data, called a list.

Here is how we create a list, which consists of three components, a character vector chr, a
numeric vector num, and a logical vector boo. Note that the lengths of all components do not
need to be equal.

mylist <- list(chr = c("a", "b", "c", "d"),

num = 1:10,

boo = c(TRUE, FALSE, FALSE, TRUE))
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mylist

$chr

[1] "a" "b" "c" "d"

$num

[1] 1 2 3 4 5 6 7 8 9 10

$boo

[1] TRUE FALSE FALSE TRUE

To select a component, we use the $=operator or =[[]].

mylist$chr

mylist[[2]][3:6]

mylist[["boo"]][-1]

[1] "a" "b" "c" "d"

[1] 3 4 5 6

[1] FALSE FALSE TRUE

3 Data Management in R

R use data frames as its main device to save a whole data set, especially data read from an
external file. A data frame is a mixture of a list and a matrix. As a list, a data frame can
include different types of data and use the $ or [[]] operator to select a component that is a
variable in the data set. As a matrix, all variables in a data frame should have the same length
and are arranged in a matrix format.

3.1 Create a data frame

We can manually create a data frame object, convert a matrix to a data frame object, or read
data in an external file into R and save them in a data frame object.

Create a data frame manually

mydata <- data.frame(X = 1:5, Y = letters[1:5], Z = rep(c(TRUE, FALSE), length = 5)); mydata

X Y Z

1 1 a TRUE

2 2 b FALSE

3 3 c TRUE

4 4 d FALSE
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5 5 e TRUE

Convert a matrix to a data frame

We use as.data.frame() to convert a matrix to a data frame. In creating the matrix, we use
sample.int() that is a special case of the function sample() to draw random samples from a
vector.

A <- matrix(sample.int(100, size = 20), nrow = 5)

A.df <- as.data.frame(A); A.df

V1 V2 V3 V4

1 3 30 91 79

2 84 58 24 27

3 19 77 98 70

4 94 46 13 38

5 35 85 11 92

We can assign each variable (column) a name. Here we use the function paste() to combine a
string VAR with each element of the vector 1:4, joined with _.

names(A.df) <- paste("VAR", 1:4, sep = "_"); A.df

VAR_1 VAR_2 VAR_3 VAR_4

1 3 30 91 79

2 84 58 24 27

3 19 77 98 70

4 94 46 13 38

5 35 85 11 92

3.2 Read data from a file

Suppose we have a data file, mydata.txt. We can read the data directly from the file using
the function read.table(). Upon reading the data into R, we should check whether data are
correctly using the function head() to check the first few (default is six) observations. (or )

mydata <- read.table("mydata.txt", header = TRUE, sep = "")

head(mydata)

# tail(mydata)

Names Gender Weight Overweight

1 Bob M 72.5 FALSE

2 John M 83.1 FALSE

3 Anne F 60.8 FALSE

4 Dan M 89.7 TRUE
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mydata.txt


5 Juan M 93.2 TRUE

6 Jane F 76.9 TRUE

Often we may encounter data files ending with .csv, which is a special type of a text file, with
commas separating each value. And we use the function read.csv() to read a .csv file.

tail(read.csv("mydata.csv", header = TRUE))

Names Gender Weight Overweight

2 John M 83.1 FALSE

3 Anne F 60.8 FALSE

4 Dan M 89.7 TRUE

5 Juan M 93.2 TRUE

6 Jane F 76.9 TRUE

7 Doris F 56.3 FALSE

We can also read data from an excel file or a Stata file that we will see in the final section of
this tutorial. To read these types of files, we need to load the packages of gdata, foreign (for
Stata 12 and prior version), or readstata13 (for Stata 13 and newer version).

library(gdata)

read.xls(mydata.xls)

library(foreign)

read.dta(mydata.dta)

3.3 Select variables

Since a data frame is a special case of list, we can select a variable in a data frame by using "$"
or "[[]]". Here is an example of computing the average weight of students.

mean(mydata$Weight)

[1] 76.07143

3.4 Get summary information

After reading data into R, besides using head() or tail() to see the first and last few obser-
vations, we need also use str() and summary() to get some summary information of the data
set.

str(mydata)

summary(mydata)

’data.frame’: 7 obs. of 4 variables:

$ Names : Factor w/ 7 levels "Anne","Bob","Dan",..: 2 6 1 3 7 5 4
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$ Gender : Factor w/ 2 levels "F","M": 2 2 1 2 2 1 1

$ Weight : num 72.5 83.1 60.8 89.7 93.2 76.9 56.3

$ Overweight: logi FALSE FALSE FALSE TRUE TRUE TRUE ...

Names Gender Weight Overweight

Anne :1 F:3 Min. :56.30 Mode :logical

Bob :1 M:4 1st Qu.:66.65 FALSE:4

Dan :1 Median :76.90 TRUE :3

Doris:1 Mean :76.07 NA’s :0

Jane :1 3rd Qu.:86.40

John :1 Max. :93.20

Juan :1

The results of running str() show that the variables Names and Gender have the type of
Factor. In default, when reading character variables from a file, R will convert them into
factors that are categorical variables. We can preserve the type of character by including
stringsAsFactors=FALSE in read.table() or read.csv().

4 Graphics

R is very powerful in creating graphics. In this tutorial, we will learn base graphics systems in
R.

We use a database, mtcars, in the datasets package in R to show how to draw different
types of graphics. This data set contain the data that was extracted from the 1974 Motor
Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and
performance for 32 automobiles (1973–74 models).(Read https://stat.ethz.ch/R-manual/

R-devel/library/datasets/html/mtcars.html)

data(mtcars)

head(mtcars)

# str(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

4.1 The barchart

First, Let’s see the mpg (miles per gallon) among different models by the bar chart.
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barplot(sort(mtcars$mpg, decreasing = TRUE),

col = "blue",

main = "The mpg among car models",

xlab = "car models", ylab = "mpg")

4.2 The scatterplot

We know in Lecture 3 that a scatterplot is often used to see the association between two variables.
Let’s see the relationship between miles per gallon, mpg, and car weights, disp.

plot(mtcars$wt, mtcars$mpg,

main = "The scatterplot between mpg and displacement",

xlab = "Car weights (lbs/1000)",

ylab = "Miles per gallon",

pch = 19, col = "red")
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We will explore more graphic capabilities of R in the lectures to come.

5 Statistical Analysis

Now we can show how to use R to do some statistical analysis. This demonstration answers
the questions of Empirical Exercise 3.1 at the end of Chapter 3. Furthermore, we carry out
this exercise in the format of reproducible research. That means, we should accomplish they
following tasks in answering the problem:

1. using R to compute the statistics asked in the questions

2. including R code and the results of running the code in the answer, and

3. describing our work and answers in plain language along with code and numerical answers.

5.1 A description of the problem

Empirical exercise 3.1 concerns the relationship between average earnings and education levels,
using the data set from the 1992 and 2008 Current Population Survey (CPS). Specifically, we
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want to see whether the average hourly earnings (ahe) are different between workers with a
bachelor degree and those with only high school diploma (bachelor).

5.2 Answers to the questions

Question (a)

Compute the sample mean for average hourly earnings (ahe) in 1992 and
in 2008. Construct a 95% confidence interval for the population means
for ahe in 1992 and 2008 and the change between 1992 and 2008

• Read the data

The first thing first is of course read the data correctly from the Stata file data/cps92_

08.dta, which can be read by the function read.dta() in the package of foreign.

library(foreign)

cpsdat <- read.dta("data/cps92_08.dta")

head(cpsdat)

year ahe bachelor female age

1 1992 11.188811 1 0 29

2 1992 10.000000 1 0 33

3 1992 5.769231 0 0 30

4 1992 1.562500 0 0 32

5 1992 14.957265 1 0 31

6 1992 8.660096 1 1 26

• Calculate the sample means of average hourly earnings in 1992 and 2008

There are many ways to compute the sample means in 1992 and 2008, respectively. First,
to make you more familiar with the R language, we compute them in a very basic way.
Then, we show how to get the same results with some powerful functions.

# extract the data for average hourly earnings in 1992 and 2008

ahe.92 <- cpsdat$ahe[cpsdat$year == 1992]

ahe.08 <- cpsdat$ahe[cpsdat$year == 2008]

mean.ahe.92 <- mean(ahe.92); mean.ahe.92

mean.ahe.08 <- mean(ahe.08); mean.ahe.08

[1] 11.62637

[1] 18.97609

The average hourly earnings are 11.63 dollars in 1992 and 18.98 dollars in 2008.

• Construct the confidence intervals
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Recall that a 95% confidence interval for the population mean can be constructed as
Y ± 1.96SE(Y ) and SE(Y ) is computed as sY /

√
n.

# the sample variance

sd.ahe.92 <- sd(ahe.92)

sd.ahe.08 <- sd(ahe.08)

n.92 <- length(ahe.92)

n.08 <- length(ahe.08)

# the standard error

se.ahe.92 <- sd.ahe.92 / sqrt(n.92)

se.ahe.08 <- sd.ahe.08 / sqrt(n.08)

# 95% confidence interval

# the 95% critical value from a normal distribution

cv.95 <- qnorm(0.975)

lower.lim.92 <- mean.ahe.92 - cv.95 * se.ahe.92

lower.lim.08 <- mean.ahe.08 - cv.95 * se.ahe.08

upper.lim.92 <- mean.ahe.92 + cv.95 * se.ahe.92

upper.lim.08 <- mean.ahe.08 + cv.95 * se.ahe.08

The 95% confidence interval for ahe in 1992 is (11.5, 11.75), and that in 2008 is (18.75,
19.2).

• Alternative methods to calculate the sample means and confidence intervals

In the above example, to compute the sample averages in 1992 and 2008, we write code
separately for each year, which can be done more easily in R.

We can compute the averages for each year using the function aggregate(), which splits
the whole data base into two parts by the values of year. Then, for each part we compute
the average by specifying the argument FUN to be mean, i.e., specifying the function to
be used for each part as the mean() function. Also, in this case, we use ~ to specify a
formula that means that we split ahe by year.

# Use aggregate() to compute the means in both years

ahe.means <- aggregate(ahe ~ year, FUN = mean, data = cpsdat)

ahe.means

year ahe

1 1992 11.62637

2 2008 18.97609
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The confidence interval can be extracted from the results of the t.test() function, which
is a list.

# t test for ahe in 1992

t.ahe.92 <- t.test(ahe.92); t.ahe.92$conf.int

# t test for ahe in 2008

t.ahe.08 <- t.test(ahe.08); t.ahe.08$conf.int

# test for the change between 1992 and 2008

t.ahe.diff <- t.test(ahe.08, ahe.92); t.ahe.diff

[1] 11.50019 11.75254

attr(,"conf.level")

[1] 0.95

[1] 18.74975 19.20244

attr(,"conf.level")

[1] 0.95

Welch Two Sample t-test

data: ahe.08 and ahe.92

t = 55.597, df = 12065, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

7.090601 7.608853

sample estimates:

mean of x mean of y

18.97609 11.62637

The confidence interval of the change in average hourly earnings between 1992 and 2008
is (7.09, 7.61).

Question (b)

Now we need to adjust the average hourly earnings in the 1992 dollars to the 2008 dollars with
the inflation rate, computed as CPI2008/CPI1992.

# CPI in 1992 and 2008

cpi.92 <- 140.3

cpi.08 <- 215.2

# Inflation adjustment

inflator <- cpi.08 / cpi.92

cpsdat$ahe.adj <- with(cpsdat, ifelse(year == 1992, ahe * inflator, ahe))

In the code block above, we first use the function with() to attach the data frame cpsdat within
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its own environment so that when we refer to variables in cpsdat, such as ahe and year, we do
not need to write cpsdat$ and every time we use its variables.

The function ifesle() set the values of ahe based on the condition year == 1992. If the
condition is true, we do ahe * inflator; if not, leave ahe as it is.

Then we repeat what we’ve done in Question (a) with the inflation-adjusted earnings in 1992.

ahe.92.adj <- with(cpsdat, ahe.adj[year == 1992])

mean.ahe.92.adj <- mean(ahe.92.adj)

t.ahe.92.adj <- t.test(ahe.92.adj)

t.ahe.diff.adj <- t.test(ahe.08, ahe.92.adj)

• The sample average of the inflation-adjusted earnings in 1992 is 17.83 in the 2008 dollars.

• The confidence interval for the inflation-adjusted average hourly earnings in 1992 is (17.64,
18.03).

• The confidence interval for the change between 1992 and 2008 is (0.85, 1.44).

Question (c)

If we are interested in the change in workers’ purchasing power, the results with the inflation-
adjusted earnings should be used in comparison.

Question (d)

Now let’s compute the average earnings for high school graduates and college graduates with the
2008 data. First thing to do is to select the 2008 data from cpsdat using the function subset()

# select data in 2008

cps08 <- subset(cpsdat, year == 2008, select = c(year, ahe, bachelor))

# calculate means

ahe.educ.08 <- aggregate(ahe ~ bachelor, FUN = mean, data = cps08)

# select ahe and filter by bachelor

ahe.high.08 <- with(cps08, ahe[bachelor == 0])

ahe.bach.08 <- with(cps08, ahe[bachelor == 1])

# construct confindence interval

t.ahe.high.08 <- t.test(ahe.high.08)

t.ahe.bach.08 <- t.test(ahe.bach.08)

t.ahe.gap.08 <- t.test(ahe.bach.08, ahe.high.08)
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• The mean of the average hourly earnings of high school graduates in 2008 is 15.33 dollars
with the 95% confidence interval (15.09, 15.57)

• The mean of the average hourly earnings of college graduates is 22.91 dollars with the
95% confidence interval (22.56, 23.26)

• The 95% confidence interval of the gap in earnings between the two groups is (7.15, 8)

We can create a boxplot to compare the means and confidence intervals of average hourly earnings
between high school graduates and college graduates.

boxplot(ahe ~ bachelor, data = cps08,

main = "Average Hourly Earnings by Education",

col = c("red", "orange"),

xlab = "Bachelor degres = 1, high school = 0",

ylab = "US$ 2008")

We leave Question (e)-(g) to students as exercises.

I include all the files to generate a complete answer to Empirical exercise 3.1 in the following
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package, rfiles.zip, including the R code file, Rmarkdown file, the data file, and the html and
pdf files containing the answers.
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