Lecture 4: Review of Linear Algebra

Zheng Tian

э

(日) (同) (三) (三)

Outline

- Vectors and Matrices
- 2 Matrix Operations
- 3 Matrix Inverse
- 4 Linear Independence
- 5 Positive definite matrices
- 6 Calculus with Vectors and Matrices

э

・ 戸 ト ・ ヨ ト ・ ヨ ト

Vectors

• A vector is an ordered set of numbers arranged in a column. An n-dimensional column vector **a** is

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

э

Matrices

• A matrix is a set of column vectors. An $n \times k$ matrix **A** is

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{bmatrix}$$

3

イロト イポト イヨト イヨト

Square and symmetric matrix

A square matrix the number of rows equal the number of columns, that is, n = k

A symmetric matrix the (i, j) element equal to the (j, i) element.

イロト イポト イヨト イヨト

Diagonal matrix

• A diagonal matrix: a square matrix in which all off-diagonal elements equal zero, that is,

$$\mathbf{A} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

э

(日) (同) (三) (三)

Identity matrix

 An identity matrix: a diagonal matrix in which all diagonal elements are 1. A subscript is sometimes included to indicate its size, e.g. I₄ indicate a 4 × 4 identity matrix.

$$\mathbf{I}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(人間) トイヨト イヨト

Triangular matrix

• A triangular matrix: have only zeros either above or below the main diagonal. A lower triangular matrix looks like

$$\mathbf{A} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Transpose

 The transpose of a matrix A, denoted A', is obtained by creating the matrix whose kth row is the kth column of the original matrix. That is,

$$\mathbf{B} = \mathbf{A}' \Leftrightarrow b_{ik} = a_{ki}$$
 for all *i* and *k*

- For any A, we have (A')' = A
- If A is symmetric, then A = A'.

(4 冊) (4 回) (4 回)

Addition

• For two matrices **A** and **B** with the same dimensions, that is both are $n \times k$.

$$\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$$
 for all *i* and *j*

Ξ.

イロン 不聞と 不同と 不同と

Vector multiplication

• The inner product of two $n \times 1$ column vector **a** and **b** is

$$\mathsf{a}'\mathsf{b} = \sum_{i=1}^n a_i b_i$$

Since both **a** and **b** are $n \times 1$ vectors, it must hold that $\mathbf{a'b} = \mathbf{b'a}$.

э

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Matrix multiplication

 Suppose that A is an n × m matrix and B is an m × k matrix, then the product C = AB is an n × k matrix, where the (i, j) element of C is c_{ij} = ∑_{l=1}^m a_{il}b_{lj}.

In other words, if we write A and B with vectors, that is,

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1' \\ \mathbf{a}_2' \\ \vdots \\ \mathbf{a}_n' \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_k \end{bmatrix}$$

where $\mathbf{a}_i = [a_{i1}, a_{i2}, \cdots, a_{im}]'$ is the ith row of **A** for $i = 1, 2, \dots, n$, and $\mathbf{b}_j = [b_{1j}, b_{2j}, \dots, b_{mj}]'$ is the jth column of **B** for $j = 1, 2, \dots, k$.

(人間) トイヨト イヨト

Multiplication

Matrix multiplication (cont'd)

$$\mathbf{AB} = \begin{bmatrix} \mathbf{a}_1'\mathbf{b}_1 & \cdots & \mathbf{a}_1'\mathbf{b}_k \\ \mathbf{a}_2'\mathbf{b}_1 & \cdots & \mathbf{a}_2'\mathbf{b}_k \\ \vdots & \ddots & \vdots \\ \mathbf{a}_n'\mathbf{b}_1 & \cdots & \mathbf{a}_n'\mathbf{b}_k \end{bmatrix}$$

3

イロン 不聞と 不同と 不同と

Properties of matrix addition and multiplication

- Commutative law: **A** + **B** = **B** + **A**. No commutative law for matrix multiplication.
- Associative law: (A + B) + C = A + (B + C) and (AB)C = A(BC)
- Distributive law: A(B + C) = AB + AC
- Transpose of a sum and a product: (A + B)' = A' + B' and (AB)' = B'A'.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition

 Let A be an n × n square matrix. A is said to be invertible or nonsingular if such a matrix A⁻¹ exists that A⁻¹A = I_n. A⁻¹ is the inverse of A.

3

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Calculation

• Let a^{ik} be the ikth element of A^{-1} . The general formula for computing an inverse matrix is

$$a^{ik} = rac{|\mathbf{C}_{ki}|}{|\mathbf{A}|}$$

where $|\mathbf{A}|$ is the determinant of \mathbf{A} , $|\mathbf{C}_{ki}|$ is the kith cofactor of \mathbf{A} , that is, the determinant of the matrix \mathbf{A}_{ki} obtained from \mathbf{A} by deleting row k and column i, pre-multiplied by $(-1)^{(k+i)}$.

(4 冊) (4 回) (4 回)

Example 1: The inverser of a 2×2 matrix

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

3

イロト イポト イヨト イヨト

Example 2: The inverse of a diagonal matrix

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}^{-1} = \begin{bmatrix} 1/a_{11} & 0 & \cdots & 0 \\ 0 & 1/a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/a_{nn} \end{bmatrix}$$

3

イロン 不聞と 不同と 不同と

Linear independence

The set of k n × 1 vectors, a₁, a₂, ..., a_k are linearly independent if there do not exist nonzero scalars c₁, c₂, ..., c_k such that c₁a₁ + c₂a₂ + ··· + c_ka_k = 0_{n×1}.

3

The rank of a matrix

- The rank of the $n \times k$ matrix **A** is the number of linearly independent column vectors of **A**, denoted as rank(**A**).
- If rank(A) = k, then A is said to have full column rank. Then, there do not exist a nonzero k × 1 vector c such that Ac = 0.
- If A is an $n \times n$ square matrix and rank(A) = n, then A is nonsingular.
- If A has full column rank, then A'A is nonsingular.

・ 同 ト ・ ヨ ト ・ ヨ ト

Positive definite matrices

- Let V be an n × n square matrix. Then V is positive definite if c'Vc > 0 for all nonzero n × 1 vector c.
- V is positive semidefinite if $\mathbf{c}'\mathbf{V}\mathbf{c} \ge 0$ for all nonzero $n \times 1$ vector \mathbf{c} .
- If V is positive definite, then it is nonsingular.

・ 同 ト ・ ヨ ト ・ ヨ ト

Calculus with Vectors and Matrices

• We need to use the following results of matrix calculus in the future lectures.

$$\begin{aligned} \frac{\partial \mathbf{a'x}}{\partial \mathbf{x}} &= \mathbf{a}, \ \frac{\partial \mathbf{x'a}}{\partial \mathbf{x}} &= \mathbf{a}, \ \text{ and } \\ \frac{\partial \mathbf{x'Ax}}{\partial \mathbf{x}} &= (\mathbf{A} + \mathbf{A'})\mathbf{x} \end{aligned}$$

When A is symmetric, then $(\partial x'Ax)/(\partial x) = 2Ax$

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト