Lecture 4: Review of Linear Algebra
Table of Contents
In this part, we will go over some very basic knowledge of linear algebra, which will be used in this course. The main references are Appendix 18.1 in Stock and Watson's book.
1 Vectors and Matrices
1.1 Vectors
A vector is an ordered set of numbers arranged in a column1. An n-dimensional column vector \(\mathbf{a}\) is
\begin{equation*} \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \end{equation*}1.2 Matrices
A matrix is a set of column vectors. An \(n \times k\) matrix \(\mathbf{A}\) is
\begin{equation*} \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{bmatrix} \end{equation*}1.3 Types of Matrices
- A square matrix: the number of rows equal the number of columns, that is, \(n = k\)
- A symmetric matrix: the \((i,j)\) element equal to the \((j, i)\) element.
A diagonal matrix: a square matrix in which all off-diagonal elements equal zero, that is,
\begin{equation*} \mathbf{A} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \end{equation*}An identity matrix: a diagonal matrix in which all diagonal elements are 1. A subscript is sometimes included to indicate its size, e.g. \(\mathbf{I}_4\) indicate a \(4 \times 4\) identity matrix.
\begin{equation*} \mathbf{I}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{equation*}A triangular matrix: have only zeros either above or below the main diagonal. A lower triangular matrix looks like
\begin{equation*} \mathbf{A} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \end{equation*}
2 Matrix Operations
2.1 Transpose
The transpose of a matrix \(\mathbf{A}\), denoted \(\mathbf{A}^{\prime}\), is obtained by creating the matrix whose kth row is the kth column of the original matrix. That is, \[ \mathbf{B} = \mathbf{A}^{\prime} \Leftrightarrow b_{ik} = a_{ki} \text{ for all } i \text{ and } k \]
- For any \(\mathbf{A}\), we have \((\mathbf{A}^{\prime})^{\prime} = \mathbf{A}\)
- If \(\mathbf{A}\) is symmetric, then \(\mathbf{A} = \mathbf{A}^{\prime}\).
2.2 Addition
For two matrices \(\mathbf{A}\) and \(\mathbf{B}\) with the same dimensions, that is both are \(n \times k\).
\[\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}] \text{ for all } i \text{ and } j\]
2.3 Multiplication
Vector multiplication. The inner product of two \(n \times 1\) column vector \(\mathbf{a}\) and \(\mathbf{b}\) is \[ \mathbf{a}^{\prime} \mathbf{b} = \sum^n_{i=1} a_i b_i \]
Since both \(\mathbf{a}\) and \(\mathbf{b}\) are \(n \times 1\) vectors, it must hold that \(\mathbf{a}^{\prime} \mathbf{b} = \mathbf{b}^{\prime} \mathbf{a}\).
Matrix multiplication. The matrices \(\mathbf{A}\) and \(\mathbf{B}\) can be multiplied if they are conformable, that is, if the number of columns of \(\mathbf{A}\) equals the number of rows of \(\mathbf{B}\).
Suppose that \(\mathbf{A}\) is an \(n \times m\) matrix and \(\mathbf{B}\) is an \(m \times k\) matrix, then the product \(\mathbf{C} = \mathbf{AB}\) is an \(n \times k\) matrix, where the \((i,j)\) element of \(\mathbf{C}\) is \(c_{ij} = \sum_{l=1}^m a_{il} b_{lj}\).
In other words, if we write \(\mathbf{A}\) and \(\mathbf{B}\) with vectors, that is,
\begin{equation*} \mathbf{A} = \begin{bmatrix} \mathbf{a}_1^{\prime} \\ \mathbf{a}_2^{\prime} \\ \vdots \\ \mathbf{a}_{n}^{\prime} \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_k \end{bmatrix} \end{equation*}where \(\mathbf{a}_i = [a_{i1}, a_{i2}, \cdots, a_{im}]^{\prime}\) is the ith row of \(\mathbf{A}\) for \(i = 1, 2, \ldots, n\), and \(\mathbf{b}_j = [b_{1j}, b_{2j}, \ldots, b_{mj}]^{\prime}\) is the jth column of \(\mathbf{B}\) for \(j = 1, 2, \ldots, k\). Then,
\begin{equation*} \mathbf{AB} = \begin{bmatrix} \mathbf{a}_1^{\prime} \mathbf{b}_1 & \cdots & \mathbf{a}_1^{\prime} \mathbf{b}_k \\ \mathbf{a}_2^{\prime} \mathbf{b}_1 & \cdots & \mathbf{a}_2^{\prime} \mathbf{b}_k \\ \vdots & \ddots & \vdots \\ \mathbf{a}_n^{\prime} \mathbf{b}_1 & \cdots & \mathbf{a}_n^{\prime} \mathbf{b}_k \end{bmatrix} \end{equation*}
2.4 Properties of matrix addition and multiplication
- Commutative law: \(\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}\). No commutative law for matrix multiplication.
- Associative law: \((\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})\) and \((\mathbf{AB}) \mathbf{C} = \mathbf{A} (\mathbf{BC})\)
- Distributive law: \(\mathbf{A} (\mathbf{B} + \mathbf{C}) = \mathbf{AB} + \mathbf{AC}\)
- Transpose of a sum and a product: \((\mathbf{A} + \mathbf{B})^{\prime} = \mathbf{A}^{\prime} + \mathbf{B}^{\prime}\) and \((\mathbf{A} \mathbf{B})^{\prime} = \mathbf{B}^{\prime} \mathbf{A}^{\prime}\).
3 Matrix Inverse
3.1 Definition
Let \(\mathbf{A}\) be an \(n \times n\) square matrix. \(\mathbf{A}\) is said to be invertible or nonsingular if such a matrix \(\mathbf{A}^{-1}\) exists that \(\mathbf{A}^{-1} \mathbf{A} = \mathbf{I}_n\). \(\mathbf{A}^{-1}\) is the inverse of \(\mathbf{A}\).
3.2 Calculation
Let \(a^{ik}\) be the ikth element of \(\mathbf{A}^{-1}\). The general formula for computing an inverse matrix is \[ a^{ik} = \frac{|\mathbf{C}_{ki}|}{|\mathbf{A}|} \] where \(| \mathbf{A} |\) is the determinant of \(\mathbf{A}\), \(| \mathbf{C}_{ki} |\) is the kith cofactor of \(\mathbf{A}\), that is, the determinant of the matrix \(\mathbf{A}_{ki}\) obtained from \(\mathbf{A}\) by deleting row \(k\) and column \(i\), pre-multiplied by \((-1)^{(k + i)}\).
Example 1. Calculate the inverse of a \(2 \times 2\) matrix.
\begin{equation*} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} =\frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} \end{equation*}Example 2. The inverse of a diagonal matrix.
\begin{equation*} \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}^{-1} = \begin{bmatrix} 1/a_{11} & 0 & \cdots & 0 \\ 0 & 1/a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/a_{nn} \end{bmatrix} \end{equation*}
4 Linear Independence
4.1 Linear independence
The set of \(k\) \(n \times 1\) vectors, \(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k\) are linearly independent if there do not exist nonzero scalars \(c_1, c_2, \ldots, c_k\) such that \(c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \cdots + c_k \mathbf{a}_k = \mathbf{0}_{n \times 1}\).
4.2 The rank of a matrix
The rank of the \(n \times k\) matrix \(\mathbf{A}\) is the number of linearly independent column vectors of \(\mathbf{A}\), denoted as \(\mathrm{rank}(\mathbf{A})\).
- If \(\mathrm{rank}(\mathbf{A}) = k\), then \(\mathbf{A}\) is said to have full column rank. Then, there do not exist a nonzero \(k \times 1\) vector \(\mathbf{c}\) such that \(\mathbf{A} \mathbf{c} = \mathbf{0}\).
- If \(\mathbf{A}\) is an \(n \times n\) square matrix and \(\mathrm{rank}(\mathbf{A}) = n\), then \(\mathbf{A}\) is nonsingular.
- If \(\mathbf{A}\) has full column rank, then \(\mathbf{A}^{\prime} \mathbf{A}\) is nonsingular.
5 Positive Definite and Eigenvalues
5.1 Positive definite matrices
Let \(\mathbf{V}\) be an \(n \times n\) square matrix. Then \(\mathbf{V}\) is positive definite if \(\mathbf{c}^{\prime} \mathbf{V} \mathbf{c} > 0\) for all nonzero \(n \times 1\) vector \(\mathbf{c}\). And \(\mathbf{V}\) is positive semidefinite if \(\mathbf{c}^{\prime} \mathbf{V} \mathbf{c} \geq 0\) for all nonzero \(n \times 1\) vector \(\mathbf{c}\).
- If \(\mathbf{V}\) is positive definite, then it is nonsingular.
6 Calculus with Vectors and Matrix
We need to use the following results of matrix calculus in the future lectures.
\begin{align*} & \frac{\partial \mathbf{a}^{\prime} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a},\; \frac{\partial \mathbf{x}^{\prime} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a},\; \text{ and } \\ & \frac{\partial \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\prime}) \mathbf{x} \end{align*}When \(\mathbf{A}\) is symmetric, then \((\partial \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}) / (\partial \mathbf{x}) = 2\mathbf{A} \mathbf{x}\)
Footnotes:
It is a common practice that we only define a vector as a column vector. A row vector is thus the transpose of a column vector.