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Estimation of the Population Mean

The goal of estimation

Suppose we draw n random samples, Y1, . . . ,Yn, and
Yi ∼ IID(µY , σ

2
Y ) for i = 1, . . . , n.

The goal is to estimate µY given these n samples. A natural way is to
compute the sample average, Y .
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Estimation of the Population Mean

Estimators

An estimator is a function of a sample of data to be drawn randomly
from a population.
An estimate is the numerical value of the estimator when it is actually
computed using data from a specific sample.
An estimator is a random variable because of randomness in selecting
the sample, while an estimate is a nonrandom realization of the
estimator.
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Estimation of the Population Mean

Estimators of µY

Y = (1/n)
∑n

i=1 Yi is an estimator of µY .
Y1, the first observation, can also be used as an estimator because it
is indeed a function of sample data.
As such, we can have many different estimators of µY . How can we
judge which estimator is better than another?

Zheng Tian Lecture 3: Review of Statistics 5 / 46



Estimation of the Population Mean Unbiasedness

Definition of unbiased estimators

Let µ̂Y be an estimator of µY . The estimator µ̂Y is said to be
unbiased if

E(µ̂Y ) = µY

where E(µ̂Y ) is the expectation of the sampling distribution of µ̂Y .
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Estimation of the Population Mean Unbiasedness

Are Y and Y1 unbiased?

Y is an unbiased estimator of µY .

In Lecture 2, we have already shown that E(Y ) = µY when
Yi ∼ IID(µY , σ

2
Y ) for i = 1, . . . , n.

Y1 is also an unbiased estimator.
E(Y1) = µY when Y1 is drawn from IID(µY , σ

2
Y ).

Zheng Tian Lecture 3: Review of Statistics 7 / 46



Estimation of the Population Mean Consistency

Definition of consistent estimators

µ̂Y is a consistent estimator of µY if µ̂Y is convergent in probability
to µY . That is, µ̂Y is consistent if

µ̂Y
p−→ µY as n→∞
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Estimation of the Population Mean Consistency

Are Y and Y1 consistent?

Y is a consistent estimator of µY .

The law of large number ensures that Y
p−→ µY is true when

Yi ∼ IID(µY , σ
2
Y ) for i = 1, . . . , n, and σ2

Y <∞.

However, we cannot assess the consistency for Y1 because it cannot
be written as the form of an average.
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Estimation of the Population Mean Variance and efficiency

Definition of efficient estimators

When both µ̃Y and µ̂Y are two unbiased estimators of µY , we choose
the estimator with the tightest sampling distribution, which means the
smallest variance.
µ̂Y is said to be more efficient than µ̃Y if

Var(µ̂Y ) < Var(µ̃Y )

In words, µ̂Y is more efficient than µ̃Y because µ̂Y uses the
information in the data more efficiently than does µ̃Y .
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Estimation of the Population Mean Variance and efficiency

Y is more efficient than Y1?

In Lecture 2, we compute the variance of Y to be σ2
Y /n when

Yi ∼ IID(µY , σ
2
Y ).

The variance of Y1 is σ2
Y .

When n > 1, Y is more efficient than Y1.
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Estimation of the Population Mean Y is the best linear unbiased estimator (BLUE)

BLUE

Y happens to be the Best Linear Unbiased Estimator (BLUE).
It means that among all linear unbiased estimator, Y has the smallest
variance.
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Estimation of the Population Mean Y is the best linear unbiased estimator (BLUE)

Linear estimators and Y is BLUE

A linear estimator of µY is a weighted average of Y1, . . . ,Yn, written
as

µ̃Y =
1
n

n∑
i=1

αiYi

where α1, . . . , αn are nonrandom constants.
If µ̃Y is another unbiased estimator of µY , then we always have
Var(Y ) ≤ Var(µ̃Y ), and the equality holds only if µ̃Y = Y . It means
that Y is BLUE.
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Estimation of the Population Mean Y is the least squares estimator of µY

A linear model for the population mean

Consider the following model

Yi = α + ui for i = 1, 2, . . . , n

where α is a nonrandom intercept to be estimated.
ui is the error term, which is a random variable with E(ui ) = 0. Thus,
we have E (Yi ) = α = µY .
ui can be seen as the error of predicting Yi with α for each i , and we
use

n∑
i=1

(Yi − α)2

to measure the total prediction errors.
A natural choice of an estimator of α is the one that minimizes this
sum of squared errors.
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Estimation of the Population Mean Y is the least squares estimator of µY

The least squares estimator

The least squares estimator of µY (or α) is obtained by solving the
following problem

min
a

n∑
i=1

(Yi − a)2

The solution of this minimization problem is just a = Y .
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Estimation of the Population Mean Y is the least squares estimator of µY

The proof for Y is the least square estimator

The first order condition for the minimization problem is

d

da

n∑
i=1

(Yi − a)2 = −2
n∑

i=1

(Yi − a) = −2
n∑

i=1

Yi + 2na = 0

Solving the equation for a, we get a = 1/n
∑n

i=1 Yi = Y .
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Hypothesis Tests Concerning the Population Mean

The null hypothesis

Hypothesis testing is thus to make a provisional decision based on the
evidence at hand on.
The hypothesis of the population mean, E(Y ), taking on a specific
value, µY ,0. So the null hypothesis, denoted as H0, is

H0 : E (Y ) = µY ,0
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Hypothesis Tests Concerning the Population Mean

The alternative hypothesis

The alternative hypothesis, denoted as H1

The two-sided alternative: H1 : E (Y ) 6= µY ,0
The one-sided alternative: H1 : E (Y ) > µY ,0

The language
One thing should be kept in mind is that we usually do not say
"accept the null hypothesis" when the hypothesis test is in favor of
the null, but say "fail to reject the null".
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Hypothesis Tests Concerning the Population Mean

The z-statistic when σY is known

We know that when Yi ∼ IID(µY , σ
2
Y ) for i = 1, . . . , n, E (Y ) = µY

and Var(Y ) = σ2
Y

= σ2
Y /n.

In the null hypothesis, we specify µY = µY ,0.
So given that σY is known, the z-statistic is computed as

z =
Y − µY ,0

σY
=

Y − µY ,0
σY /
√
n

As n→∞, by the central limit theorem, we know z
d−→ N(0, 1).
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Hypothesis Tests Concerning the Population Mean

The t-statistic when σY is unknown

Of course, σY is the standard deviation of the population variance
that is usually unknown. So we need to replace σY with its estimator.
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Hypothesis Tests Concerning the Population Mean

The sample variance and standard deviation

The sample variance s2
Y is is an estimator of the population variance

σ2
Y , which is computed as

s2
Y =

1
n − 1

n∑
i=1

(Yi − Y )2

The sample standard deviation, sY , is the square root of s2
Y

The sample variance, s2
Y , is a consistent estimator of the population

variance, that is, as

n→∞, s2
Y

p−→ σ2
Y
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Hypothesis Tests Concerning the Population Mean

The standard error of Y

The standard error of Y , denoted as SE (Y ) or σ̂Y , is an estimator of
the standard deviation of Y , σY = σY /

√
n, with sY replacing σY .

SE (Y ) = σ̂Y =
sY√
n
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Hypothesis Tests Concerning the Population Mean

The t-statistic

When σY is unknown, by replacing σY with sY , we have the t statistic

t =
Y − µY ,0
SE (Y )

=
Y − µY ,0
sY /
√
n

The asymptotic distribution of the t statistic is N(0, 1) because sY is a
consistent estimator of σY .
When Yi for i = 1, . . . , n are i.i.d. from N(µY , σ

2
Y ), we can show that

the exact distribution for the t statistic is the student t distribution
with (n − 1) degrees of freedom. That is

t ∼ t(n − 1)
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Hypothesis Tests Concerning the Population Mean

Hypothesis testing with a pre-specified significance level

With the null and alternative hypotheses being the goal of the test and test
statistics being the tools, we need a rule to make a judgment: When can
we reject (or fail to reject) the null hypothesis if the test statistic takes on
what values? To do so, we need to first define some concepts.
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Hypothesis Tests Concerning the Population Mean

Type I and type II errors

A statistical hypothesis test can make two types of mistakes:
Type I error. The null hypothesis is rejected when in fact it is true.
Type II error. The null hypothesis is not rejected when in fact it is false.
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Hypothesis Tests Concerning the Population Mean

The significance level and the critical value

The significance level is the pre-specified probability of type I error.
Usually, we set the significance level to be α = 0.05, 0.10, or 0.01.
The critical value, denoted as cα, is the value of the test statistic for
which the test rejects the null hypothesis at the given significance
level. The N(0, 1) critical value for a two-sided test with a 5%
significance level is 1.96.
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Hypothesis Tests Concerning the Population Mean

The rejection rule and rejection region

The rejection rule. For a two-sided test, we reject the null hypothesis
when |zact | > cα.
The rejection region is the set of values of the test statistic for which
the test rejects the null, and the acceptance region is the vice.
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Hypothesis Tests Concerning the Population Mean

The rejection region illustrated

Figure: An illustration of a two-sided testZheng Tian Lecture 3: Review of Statistics 28 / 46



Hypothesis Tests Concerning the Population Mean

The power and the size of the test

The size of the test is the probability that the test actually incorrectly
rejects the null hypothesis when it is true. That is, the size of the test
is just the significance level.
The power of the test is the probability that the test correctly rejects
the null when the alternative is true. That is,

power = 1− Pr(type II error)

Zheng Tian Lecture 3: Review of Statistics 29 / 46



Hypothesis Tests Concerning the Population Mean

The p-value

The p-value, also called the significance probability, is the probability
of drawing a statistic at least as adverse to the null hypothesis as the
one you actually computed in your sample, assuming the null
hypothesis is correct.
The p-value provides more information than the significance level.
In fact, the p-value is also named the marginal significance level,
which the smallest significance level at which you can reject the null
hypothesis.
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Hypothesis Tests Concerning the Population Mean

Rejection rule with the p-value

The rejection rule of rejecting the null is then the p-value < α.
Mathematically, the p-value is computed as

p-value =

{
PrH0 (|z | > |zact |) = 2Φ(−|zact |) when σY is known
PrH0 (|t| > |tact |) = 2Φ(−|tact |) when σY is unknown
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Hypothesis Tests Concerning the Population Mean

One-sided alternatives

For a one-sided alternative hypothesis, H1 : E(Y ) > µY ,0, we can
compute the p-value as

p-value = PrH0(t > tact) = 1− Φ(tact)

The N(0, 1) critical value for a one-sided test with a 5% significance
level is 1.64. The rejection region for this test is all values of the
t-statistic exceeding 1.64.
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Confidence Intervals for the Population Mean

Definitions

A confidence set is the set of values that contains the true population
mean µY with a certain prespecified probability.
A confidence level is the prespecified probability that µY is contained
in the confidence set. confidence level = 1− significance level.
A confidence interval is the confidence set when it is an interval.
In the case of a two-sided test for µY , we say that a 95% confidence
interval is an interval constructed so that it contains the true value of
µY in 95% of all possible random samples.
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Confidence Intervals for the Population Mean

Constructing a confidence interval based on the t statistic

Step 1: we compute the t statistic for the two-sided test

t =
Y − µY ,0
SE (Y )

d−→ N(0, 1)

Step 2: we know that we fail to reject the null at the 5% level if
|t| < 1.96.
Step 3: we plug in the definition of t and solving for |t| ≤ 1.96, we get

−1.96 ≤
Y − µY ,0
SE (Y )

≤ 1.96

Y − 1.96SE (Y ) ≤ µY ,0 ≤ Y + 1.96SE (Y )
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Confidence Intervals for the Population Mean

The 95%, 90%, and 99% confidence interval

The 95% confidence interval two-sided confidence interval for µY is

{Y ± 1.96SE (Y )}

90% confidence interval for µY = {Y ± 1.64SE (Y )}
99% confidence interval for µY = {Y ± 2.58SE (Y )}
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Comparing Means from Different Populations

Hypothesis tests for the difference between two means

The question is whether there is a difference in earnings between male
college graduates and female college graduates.
Let Ym,i for i = 1, . . . , nm be nm i.i.d. samples from the population of
earnings of male college graduate, i.e.,

Ym,i ∼ IID(µm, σ
2
m) for i = 1, . . . , nm

Let Yw ,j for j = 1, . . . , nw be nw i.i.d. samples from the population of
earnings of female college graduate, i.e.,

Yw ,j ∼ IID(µw , σ
2
w ) for j = 1, . . . , nw

Also, we assume that Ym,i and Yw ,j are independent.
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Comparing Means from Different Populations

The null and alternative hypotheses

The hypothesis to be tested is whether the mean earnings for the male
and female graduates differ by a certain amount, that is,

H0 : µm − µw = d0, vs. H1 : µm − µw 6= d0
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Comparing Means from Different Populations

The test procedures: step 1

Calculate the sample average earnings:

Ym for the male and Y w for the female.
As nm and nw get large, we know Ym

d−→ N(µY , σ
2
m/nm), and

Y w
d−→ N(µw , σ

2
w/nw ).

Given that Ym − Y w is a linear function of Ym and Y w , and Ym,i and
Yw ,j are independent, we know that

(Ym − Y w )
d−→ N(µm − µw ,

σ2
m

nm
+
σ2
w

nw
)
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Comparing Means from Different Populations

Step 2

When σ2
m and σ2

w are known, we use the z statistic

z =
(Ym − Y w )− d0(

σ2m
nm

+ σ2w
nw

)1/2
d−→ N(0, 1)

When σ2
m and σ2

w are unknown, we the t statistic

t =
(Ym − Y w )− d0

SE (Ym − Y w )

d−→ N(0, 1)

where

SE (Ym − Y w ) =

(
s2
m

nm
+

s2
w

nw

)1/2

s2
m =

1
nm − 1

nm∑
i=1

(Ym,i − Ym)2

s2
w =

1
nw − 1

nw∑
i=1

(Yw ,i − Y w )2
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Comparing Means from Different Populations

Step 3

Calculate the p value: The p value for the two-sided test is calculated
as

p-value = 2Φ(−|t|)

For a two-sided test at the 5% significant level, we can reject the null
hypothesis when the p value is less than 5%, or, equivalently, when
|t| > 1.96.
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Comparing Means from Different Populations

Confidence intervals for the difference between two means

The 95% confidence interval can be constructed as usual based on the
t statistic we have computed above.
The 95% confidence interval for d = µm − µw is

(Ym − Y w )± 1.96SE (Ym − Y w )
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Comparing Means from Different Populations

Differences-of-Means Estimation of Causal Effects Using
Experimental Data

We define the outcome of a randomized controlled experiment to be
Y and the binary treatment variable to be X , X = 1 for the treatment
group and X = 0 for the control group.
Then the causal effect of the treatment can be conveniently expressed
as the difference in the conditional expectation

E (Y | X = 1)− E (Y | X = 0)
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Scatterplots, the Sample Covariance, and the Sample
Correlation

Scatterplots

Exploratory data analysis. Drawing graphs is an important aspect of
exploratory data analysis to visualize the patterns of the variables of
interests.
A scatterplot is a plot of n observations on Xi and Yi , in which each
observation is represented by the point (Xi ,Yi )
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Scatterplots, the Sample Covariance, and the Sample
Correlation

An example of scatterplot

Figure: The scatterplot between test scores and student-teacher ratios
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Scatterplots, the Sample Covariance, and the Sample
Correlation

Sample covariance and sample correlation coefficient

The sample covariance, denoted as sXY , is

sXY =
1

n − 1

n∑
i=1

(Xi − X )(Yi − Y )

The sample correlation coefficient, denoted as rXY , is

rXY =
sXY
sX sY

and we have |rXY | ≤ 1.
If (Xi , Yi ) are i.i.d. and Xi and Yi have finite fourth moments, then

sXY
p−→ σXY and rXY

p−→ ρXY
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Scatterplots, the Sample Covariance, and the Sample
Correlation

The correlation coefficient measures the linear association

We should emphasize that the correlation coefficient is a measure of linear
association between X and Y .

Figure: Scatterplots for four hypothetical data sets
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