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1 Introduction

Statistics is the science of using data to learn about the world around us. The key insight of
statistics is that one can learn about a population distribution by selecting a random sample
from that population. Three types of statistical methods are used throughout econometrics:
estimation, hypothesis testing, and confidence interval.

2 Estimation of the Population Mean

Suppose we draw n random samples, Y1, . . . , Yn, that are i.i.d. with the population mean µY

and the variance σ2Y , i.e., Yi ∼ IID(µY , σ
2
Y ) for i = 1, . . . , n. The goal is to estimate µY given

these n samples. A natural way is to compute the sample average, Y . Let see the properties of
Y as an estimator of µY .

2.1 Estimators

An estimator is a function of a sample of data to be drawn randomly from a population. An
estimate is the numerical value of the estimator when it is actually computed using data from
a specific sample. An estimator is a random variable because of randomness in selecting the
sample, while an estimate is a nonrandom realization of the estimator.

Since Y = (1/n)
∑n

i=1 Yi, it is an estimator of µY . However, Y1, the first observation, can also
be used as an estimator because it is indeed a function of sample data. As such, we can have
many different estimators of µY . How can we judge which estimator is better than another?

We use three criteria to assess an estimator: unbiasedness, consistency, and efficiency.

2.2 Unbiasedness

Let µ̂Y be an estimator of µY . The estimator µ̂Y is said to be unbiased if E(µ̂Y ) = µY , where
E(µ̂Y ) is the expectation of the sampling distribution of µ̂Y .

• Y is an unbiased estimator of µY . In Lecture 2, we have already shown that E(Y ) = µY

when Yi ∼ IID(µY , σ
2
Y ) for i = 1, . . . , n.

• Y1 is also an unbiased estimator because E(Y1) = µY when Y1 is drawn from IID(µY , σ
2
Y ).

2.3 Consistency

µ̂Y is a consistent estimator of µY if µ̂Y is convergent in probability to µY . That is, µ̂Y is
consistent if µ̂Y

p−→ µY as n→∞.
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• Y is a consistent estimator of µY . The law of large number ensures that Y p−→ µY is true
when Yi ∼ IID(µY , σ

2
Y ) for i = 1, . . . , n, and σ2Y <∞.

• However, we cannot assess the consistency for Y1 because it cannot be written as the form
of an average.

2.4 Variance and efficiency

When both µ̃Y and µ̂Y are two unbiased estimators of µY , we choose the estimator with the
tightest sampling distribution, which means the smallest variance. Thus, µ̂Y is said to be more
efficient than µ̃Y if Var(µ̂Y ) < Var(µ̃Y ).

In words, µ̂Y is more efficient than µ̃Y because µ̂Y uses the information in the data more
efficiently than does µ̃Y .

In Lecture 2, we compute the variance of Y to be σ2Y /n when Yi ∼ IID(µY , σ
2
Y ). The variance

of Y1 is σ2Y . When n > 1, Y is more efficient than Y1.

2.5 Y is the best linear unbiased estimator (BLUE)

In fact, Y happens to be the best linear unbiased estimator (BLUE). It means that among all
linear unbiased estimator, Y has the smallest variance.

A linear estimator of µY is a weighted average of Y1, . . . , Yn, written as

µ̃Y =
1

n

n∑
i=1

αiYi

where α1, . . . , αn are nonrandom constants.

If µ̃Y is another unbiased estimator of µY , then we always have Var(Y ) ≤ Var(µ̃Y ), and the
equality holds only if µ̃Y = Y . It means that Y is BLUE.

The proof of Var(Y) ≤ Var(µ̃Y )

That µ̃Y is an unbiased estimator of µY means that

µY = E(µ̃Y ) = E

(
1

n

n∑
i=1

αiYi

)
=

1

n
µY

n∑
i=1

αi

which requires 1
n

∑n
i=1 αi = 1.

We know the variance of Var(Y ) is σ2Y /n, and the variance of µ̃Y can be computed as

Var(µ̃Y ) =
1

n2

n∑
i=1

α2
iVar(Yi) =

σ2Y
n2

n∑
i=1

α2
i
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So, to prove Var(µ̃Y ) ≥ Var(Y ), we only need to show 1
n

∑n
i=1 α

2
i ≥ 1.

1

n

n∑
i=1

α2
i =

1

n

n∑
i=1

(α2
i − 2αi + 1) +

1

n

n∑
i=1

2αi − 1 =
1

n

n∑
i=1

(αi − 1)2 + 1 ≥ 1

The second equality holds because 1
n

∑n
i=1 αi = 1. And Var(µ̃Y ) = Var(Y ) only if αi = 1 for all

i = 1, . . . , n, which is equivalent to µ̃Y = Y .

2.6 Y is the least squares estimator of µY

Consider the following model

Yi = α+ ui for i = 1, 2, . . . , n

where α is a nonrandom intercept to be estimated, ui is the error term, which is a random
variable with E(ui) = 0.

Thus, we have E(Yi) = α = µY . That means α is the mean of Yi, and an estimator for α is just
an estimator for µY . ui can be seen as the error of predicting Yi with α for each i, and we use∑n

i=1(Yi − α)2 to measure the total prediction errors. A natural choice of an estimator of α is
the one that minimizes this sum of squared errors.

The least squares estimator of µY (or α) is obtained by solving the following problem

min
a

n∑
i=1

(Yi − a)2

The solution of this minimization problem is just a = Y .

The proof for Y is the least square estimator

The first order condition for the minimization problem is

d

da

n∑
i=1

(Yi − a)2 = −2

n∑
i=1

(Yi − a) = −2

n∑
i=1

Yi + 2na = 0

Solving the equation for a, we get a = 1/n
∑n

i=1 Yi = Y .
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3 Hypothesis Tests Concerning the Population Mean

3.1 Null and alternative hypotheses

With the estimate of the population mean, we can test some hypotheses regarding the mean.
Hypothesis testing is thus to make a provisional decision based on the evidence at hand on.
We first set up a hypothesis to be tested, called the null hypothesis, and a second hypothesis
called the alternative hypothesis that holds if the null does not.

In this lecture, we focus on the hypothesis of the population mean, E(Y ), taking on a specific
value, µY,0. So the null hypothesis, denoted as H0, is

H0 : E(Y ) = µY,0

The alternative hypothesis, denoted as H1, can be either two-sided, i.e., H1 : E(Y ) 6= µY,0, or
one-sided, i.e., H1 : E(Y ) > µY,0, depending on the question of interest.

One thing should be kept in mind is that we usually do not say "accept the null hypothesis"
when the hypothesis test is in favor of the null, but say "fail to reject the null". That means, that
given the sample data at hand, we do not have sufficient evidence to prove the null hypothesis
is false, but it is likely that the null would be rejected given another set of samples.

3.2 Test statistics

Upon setting up the hypotheses to be tested, we need test statistics to be used in the test. In the
case of testing the population mean, E(Y ), we find two test statistics in two different situations:
the z-statistic when σY is known and the t-statistic when σY is unknown

The z-statistic when σY is known

We know that when Yi ∼ IID(µY , σ
2
Y ) for i = 1, . . . , n, E(Y ) = µY and Var(Y ) = σ2

Y
= σ2Y /n.

In the null hypothesis, we specify µY = µY,0. So given that σY is known, the z-statistic is
computed as

z =
Y − µY,0
σY

=
Y − µY,0
σY /
√
n

As n→∞, by the central limit theorem, we know z
d−→ N(0, 1).

The t-statistic when σY is unknown

Of course, σY is the standard deviation of the population variance that is usually unknown. So
we need to replace σY with its estimator.
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• The sample variance and standard deviation

The sample variance s2Y is is an estimator of the population variance σ2Y , which is
computed as

s2Y =
1

n− 1

n∑
i=1

(Yi − Y )2

The sample standard deviation, sY , is the square root of s2Y .

We can prove that the sample variance, s2Y , is a consistent estimator of the population
variance, that is, as n→∞, s2Y

p−→ σ2Y . (See the proof in Appendix 3.3.)

• The standard error of Y

The standard error of Y , denoted as SE(Y ) or σ̂Y , is an estimator of the standard deviation
of Y , σY = σY /

√
n, with sY replacing σY .

SE(Y ) = σ̂Y =
sY√
n

• The t-statistic

When σY is unknown, by replacing σY with sY , we have the t statistic

t =
Y − µY,0
SE(Y )

=
Y − µY,0
sY /
√
n

– The asymptotic distribution of the t statistic is N(0, 1) because sY is a consistent
estimator of σY .

– When Yi for i = 1, . . . , n are i.i.d. from N(µY , σ
2
Y ), we can show that the exact

distribution for the Student t statistic is the Student t distribution with (n − 1)

degrees of freedom. That is
t ∼ t(n− 1)

(See Section 3.6, Page 129, in the textbook for a discussion about the reason for t
has a t distribution with n− 1 degree of freedom.)

3.3 Hypothesis testing with a pre-specified significance level

With the null and alternative hypotheses being the goal of the test and test statistics being
the tools, we need a rule to make a judgment: When can we reject (or fail to reject) the null
hypothesis if the test statistic takes on what values? To do so, we need to first define some
concepts.

Type I and type II errors

A statistical hypothesis test can make two types of mistakes:
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• Type I error. The null hypothesis is rejected when in fact it is true.

• Type II error. The null hypothesis is not rejected when in fact it is false.

The probability of making a type I error is easier to be identified and controlled than that of
a type II error. So the commonly practiced rule of judging a hypothesis test concerns avoiding
the type I error.

The significance level and the critical value

• The significance level is the pre-specified probability of type I error. Usually, we set the
significance level to be α = 0.05, 0.10, or 0.01.

• The critical value, denoted as cα, is the value of the test statistic for which the test
rejects the null hypothesis at the given significance level. The N(0, 1) critical value for a
two-sided test with a 5% significance level is 1.96.

• The rejection rule. For a two-sided test, we reject the null hypothesis when |zact| > cα.

• The rejection rule is easier to be understood with the rejection and acceptance region, as
shown in Figure 1. The rejection region is the set of values of the test statistic for which
the test rejects the null, and the acceptance region is the vice.

The power and the size of the test

• The size of the test is the probability that the test actually incorrectly rejects the null
hypothesis when it is true. That is, the size of the test is just the significance level.

• The power of the test is the probability that the test correctly rejects the null when the
alternative is true. That is, power = 1− Pr(type II error)

3.4 The p-value

The p-value, also called the significance probability, is the probability of drawing a statistic
at least as adverse to the null hypothesis as the one you actually computed in your sample,
assuming the null hypothesis is correct.

The p-value provides more information than the significance level. In fact, the p-value is also
named the marginal significance level, which the smallest significance level at which you can
reject the null hypothesis. The rejection rule of rejecting the null is then the p-value < α.

Mathematically, the p-value is computed as

p-value =

PrH0

(
|z| > |zact|

)
= 2Φ(−|zact|) when σY is known

PrH0

(
|t| > |tact|

)
= 2Φ(−|tact|) when σY is unknown
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Figure 1: An illustration of a two-sided test

8



3.5 One-sided alternatives

For a one-sided alternative hypothesis, H1 : E(Y ) > µY,0, we can compute the p-value as

p-value = PrH0(t > tact) = 1− Φ(tact)

The N(0, 1) critical value for a one-sided test with a 5% significance level is 1.64. The rejection
region for this test is all values of the t-statistic exceeding 1.64.

4 Confidence Intervals for the Population Mean

4.1 Definitions

• A confidence set is the set of values that contains the true population mean µY with a
certain prespecified probability.

• A confidence level is the prespecified probability that µY is contained in the confidence
set. confidence level = 1− significance level.

• A confidence interval is the confidence set when it is an interval.

• In the case of a two-sided test for µY , we say that a 95% confidence interval is an interval
constructed so that it contains the true value of µY in 95% of all possible random samples.

4.2 Constructing a confidence interval based on the t statistic

• Step 1: we compute the t statistic for the two-sided test

t =
Y − µY,0
SE(Y )

d−→ N(0, 1)

• Step 2: we know that we fail to reject the null at the 5% level if |t| < 1.96.

• Step 3: we plug in the definition of t and solving for |t| ≤ 1.96, we get

−1.96 ≤
Y − µY,0
SE(Y )

≤ 1.96

Y − 1.96SE(Y ) ≤ µY,0 ≤ Y + 1.96SE(Y )

Thus, the 95% confidence interval two-sided confidence interval for µY is

{Y ± 1.96SE(Y )}
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Similarly, we can get

• 90% confidence interval for µY = {Y ± 1.64SE(Y )}

• 99% confidence interval for µY = {Y ± 2.58SE(Y )}

5 Comparing Means from Different Populations

5.1 Hypothesis tests for the difference between two means

Now we extend hypothesis testing involving one population mean to that regarding comparison
between two population means. Say, the difference in earnings between male college graduates
and female college graduates. The basic ideas and procedure in this test is the same as for
testing the single population mean.

Let Ym,i for i = 1, . . . , nm be nm i.i.d. samples from the population of earnings of male college
graduate, i.e.,

Ym,i ∼ IID(µm, σ
2
m) for i = 1, . . . , nm

and Yw,j for j = 1, . . . , nw be nw i.i.d. samples from the population of earnings of female college
graduate, i.e.,

Yw,j ∼ IID(µw, σ
2
w) for j = 1, . . . , nw

Also, we assume that Ym,i and Yw,j are independent.

The hypothesis to be tested is whether the mean earnings for the male and female graduates
differ by a certain amount, that is,

H0 : µm − µw = d0, vs. H1 : µm − µw 6= d0

As in the test for the single population mean, we can take the following steps to test the difference
in two population means:

1. Calculate the sample average earnings: Y m for the male and Y w for the female. Y m and
Y w are the unbiased estimators for µm and µw, respectively.

As nm and nw get large, we know Y m
d−→ N(µY , σ

2
m/nm), and Y w

d−→ N(µw, σ
2
w/nw).

Given that Y m−Y w is a linear function of Y m and Y w, and Ym,i and Yw,j are independent,
we know that

(Y m − Y w)
d−→ N(µm − µw,

σ2m
nm

+
σ2w
nw

)

2. When σ2m and σ2w are known, we use the z statistic

z =
(Y m − Y w)− d0(

σ2
m
nm

+ σ2
w
nw

)1/2 d−→ N(0, 1)
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When σ2m and σ2w are unknown, we the t statistic

t =
(Y m − Y w)− d0
SE(Y m − Y w)

d−→ N(0, 1)

where

SE(Y m − Y w) =

(
s2m
nm

+
s2w
nw

)1/2

s2m =
1

nm − 1

nm∑
i=1

(Ym,i − Y m)2

s2w =
1

nw − 1

nw∑
i=1

(Yw,i − Y w)2

3. Calculate the p value: The p value for the two-sided test is calculated as

p-value = 2Φ(−|t|)

For a two-sided test at the 5% significant level, we can reject the null hypothesis when the
p value is less than 5%, or, equivalently, when |t| > 1.96.

5.2 Confidence intervals for the difference between two means

The 95% confidence interval can be constructed as usual based on the t statistic we have com-
puted above. That is, the 95% confidence interval for d = µm − µw is

(Y m − Y w)± 1.96SE(Y m − Y w)

5.3 Differences-of-Means Estimation of Causal Effects Using Experimental
Data

The difference-of-means estimation and hypothesis test can be used in estimation of causal effect
in ideal randomized controlled experiments (RCE).

We define the outcome of a RCE to be Y and the binary treatment variable to be X, X = 1 for
the treatment group and X = 0 for the control group. Then the causal effect of the treatment
can be conveniently expressed as the difference in the conditional expectation,

E(Y | X = 1)− E(Y | X = 0)

We can consider the treatment group and the control group to represent two independent pop-
ulation. Then, we can use the estimation and hypothesis test regarding the difference between
two population means to examine the causal effect.
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6 Scatterplots, the Sample Covariance, and the Sample Correla-
tion

6.1 Scatterplots

Before a formal statistical study, we often first do some exploratory analysis. Drawing graphs
is an important aspect of exploratory data analysis to visualize the patterns of the variables of
interests.

A scatterplot is a plot of n observations on Xi and Yi, in which each observation is represented
by the point (Xi, Yi). Figure 2 is the scatterplot between test scores and the student-teacher
ratios in the example of California school districts.

Figure 2: The scatterplot between test scores and student-teacher ratios

6.2 Sample covariance and correlation

The population covariance and correlation measure the relation between two random variables
X and Y in their population joint probability distribution. Since they are typically unknown,
we use the sample covariance and the sample correlation coefficient as their estimators.

Sample covariance

The sample covariance, denoted as sXY , is

sXY =
1

n− 1

n∑
i=1

(Xi −X)(Yi − Y )
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Sample correlation

The sample correlation coefficient, denoted as rXY , is

rXY =
sXY
sXsY

and we have |rXY | ≤ 1.

Consistency of the sample covariance and correlation

If (Xi, Yi) are i.i.d. and Xi and Yi have finite fourth moments, then

sXY
p−→ σXY and rXY

p−→ ρXY

The correlation coefficient measures the linear association

We should emphasize that the correlation coefficient is a measure of linear association between
X and Y . There could be a relationship with zero correlation coefficient, but is in fact nonlinear,
as shown in Figure 3.

Figure 3: Scatterplots for four hypothetical data sets
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