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RENL T IAVETELIEET WAL E T RIS STl Defining probabilities and random variables

Experiments and outcomes

@ An experiment is the processes that generate random results

@ The outcomes of an experiment are its mutually exclusive potential
results.

e Example: tossing a coin. The outcome is either getting a head(H) or a
tail(T) but not both.
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RENL T IAVETELIEET WAL E T RIS STl Defining probabilities and random variables

Sample space and events

@ A sample space consists of all the outcomes from an experiment,
denoted with the set S.

o S={H, T} in the tossing-coin experiment.
@ An event is a subset of the sample space.
@ Getting a head is an event, which is {H} C {H, T}.
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Gitablly
An intuitive definition of probability

@ The probability of an event is the proportion of the time that the
event will occur in the long run.

@ For example, we toss a coin for n times and get m heads. When n is

very large, we can say that the probability of getting a head in a toss
is m/n.
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Random Variables and Probability Distributions Probability

An axiomatic definition of probability

@ A probability of an event A in the sample space S, denoted as Pr(A),
is a function that assign A a real number in [0, 1], satisfying the
following three conditions:

Q@ 0<Pr(A) <L

Q Pr(S)=1.

© For any disjoint sets, A and B, that is A and B have no element in
common, Pr(AU B) = Pr(A) + Pr(B).
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Random Variables and Probability Distributions Random variables

The definition of random variables

@ A random variable is a numerical summary associated with the
outcomes of an experiment.

@ You can also think of a random variable as a function mapping from
an event w in the sample space Q to the real line.
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RENL I IAVETELIESEN WL E I AAID ST Sl Random variables

An illustration of random variables

X{(w)

Figure: An illustration of random variable
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Random Variables and Probability Distributions Random variables

Discrete and continuous random variables

Random variables can take different types of values

@ A discrete random variables takes on a discrete set of values, like
0,1,2,...,n

@ A continuous random variable takes on a continuum of possble values,
like any value in the interval (a, b).
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Random Variables and Probability Distributions Probability distributions

The probability distribution for a discrete random variable

@ The probability distribution of a discrete random variable is the list of
all possible values of the variable and the probability that each value
will occur. These probabilities sum to 1.

@ The probability mass function. Let X be a discrete random variable.
The probability distribution of X (or the probability mass function),
p(x), is

p(x) = Pr(X = x)

@ The axioms of probability require that

Q@ 0<p(x)<1
Q2) 3 ip(x)=1
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Random Variables and Probability Distributions [EZel-EY TV g1

An example of the probability distribution of a discrete
random variable

Table: An illustration of the probability distribution of a discrete random variable

X 1 2 3 Sum
P(x) 025 050 025 1.
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RENTC T IMVETE I RN W M T ELH YA IS del TN -L,EM The cumulative probability distribution
Definition of the c.d.f.

@ The cumulative probability distribution (or the cumulative distribution
function, c.d.f.):
Let F(x) be the c.d.f of X. Then F(x) = Pr(X < x).

Table: An illustration of the c.d.f. of a discrete random variable

X 1 2 3 Sum
P(x) 025 050 025 1
Cdf. 025 0.75 1 -
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RELL N IAVETELCET WA C L E RIS Il The cumulative probability distribution

An illustration of the c.d.f. of a discrete random variable
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Figure: The c.d.f. of a discrete random variable
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RELL N IAVETELCET WA C L E RIS Il The cumulative probability distribution

Bernouli distribution

The Bernoulli distribution

1 with probability p
0 with probability 1 — p
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The probability distribution of a continuous random variable
Definition of the c.d.f. and the p.d.f.

@ The cumulative distribution function of a continous random variable is
defined as it is for a discrete random variable.

F(x) = Pr(X < x)

@ The probability density function (p.d.f.) of X is the function that
satisfies

F(x) = /X f(t)dt for all x

— 00
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RENL N IAVETELIEEET N AL E T A IS ATl The probability distribution of a continuous random variable
Properties of the c.d.f.

@ For both discrete and continuous random variable, F(X) must satisfy
the following properties:
@ F(+00)=1and F(—0) =0 (F(x) is bounded between 0 and 1)
Q x>y = F(x) > F(y) (F(x) is nondecreasing)
@ By the definition of the c.d.f., we can conveniently calculate
probabilities, such as,
e Px>a)=1-P(x<a)=1-F(a)
e P(a < x < b)=F(b)— F(a).

Lecture 2: Review of Probability 16 / 66



RENL N IAVETELIEEET N AL E T A IS ATl The probability distribution of a continuous random variable

The c.d.f. and p.d.f. of a normal distribution

The p.d.f. of the standard normal distribution
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Figure: The p.d.f. and c.d.f. of a continuous random variable (the normal
distribution)
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[SCECEYTTNAVETTENICRE C O TR VI NI The expected value of a random variable

The expected value

@ The expected value of a random variable, X, denoted as E(X), is the
long-run average of the random variable over many repeated trials or
occurrences, which is also called the expectation or the mean.

@ The expected value measures the centrality of a random variable.
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[SCECEYTTNAVETTENICRE C O TR VI NI The expected value of a random variable

Mathematical definition

@ For a discrete random variable
B(X) =) xPr(X = x)
i=1

@ e.g. The expectation of a Bernoulli random variable, G,
E(G)=1-p+0-(L-p)=p

@ For a continuous random variable
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| SN EUT BAVETTET e T MO TR VT ITNS I  The variance and standard deviation

Definition of variance and standard deviation

@ The variance of a random variable X measures its average deviation
from its own expected value.

@ Let E(X) = ux. Then the variance of X,

Var(X) = 0% = E(X — ux)?

_ Yo (xi— px)?Pr(X = x;) if X is discrete
a [ (x— px )?f(x)dx if X is continuous

@ The standard deviation of X: ox = 4/ Var(X)
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| SN EUT BAVETTET e T MO TR VT ITNS I  The variance and standard deviation

Computing variance

@ A convenient formula for calculating the variance is
Var(X) = E(X — pux)? = E(X?) — pk
@ The variance of a Bernoulli random variable, G

Var(G) = (1 - p)’p+ (0 — p)*(1 — p) = p(1 - p)

@ The expectation and variance of a linear function of X. Let
Y = a+ bX, then
o E(Y) = a+ bE(X)
o Var(Y) = Var(a + bX) = b?>Var(X).
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Expectation, Variance, and Other Moments Moments of a random variable, skewness and kurtosis

Definition of the moments of a distribution

kth moment The kth moment of the distribution of X is E(X*). So, the
expectation is the "first" moment of X.

kth central moment The kth central moment of the distribution of X with

its mean ux is E(X — ux)X. So, the variance is the second
central moment of X.

A caveat

It is important to remember that not all the moments of a distribution exist.J

Lecture 2: Review of Probability 22 / 66



Expectation, Variance, and Other Moments Moments of a random variable, skewness and kurtosis

Skewness

The skewness of a distribution provides a mathematical way to
describe how much a distribution deviates from symmetry.

Skewness = E(X — ux)*/ox

A symmetric distribution has a skewness of zero.

The skewness can be either positive or negative.

That E(X — ux)? is divided by 0% is to make the skewness measure
unit free.
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Expectation, Variance, and Other Moments Moments of a random variable, skewness and kurtosis

Kurtosis

@ The kurtosis of the distribution of a random variable X measures how
much of the variance of X arises from extreme values, which makes
the distribution have "heavy" tails.

Kurtosis = E(X — ux)*/o%
@ The kurtosis must be positive.

@ The kurtosis of the normal distribution is 3. So a distribution that has
its kurtosis exceeding 3 is called heavy-tailed.

@ The kurtosis is also unit free.
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Expectation, Variance, and Other Moments Moments of a random variable, skewness and kurtosis

An illustration of skewness and kurtosis

(a) Skewness = 0, kurtosis = 3

@ All four distributions have a mean of zero and a variance of one, while
(a) and (b) are symmetric and (b)-(d) are heavy-tailed.
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Two Random Variables

The joint and marginal distributions

The joint probability function of two discrete random variables

@ The joint distribution of two random variables X and Y is

p(x,y) =Pr(X =x,Y =y)

and Y.

The joint probability function of two continuous random variables
@ For two continuous random variables, X and Y, the counterpart of
p(x,y) is the joint probability density function, f(x,y), such that
Q f(x,y) > 0
Q /7 [T f(x,y)dxdy =1

Lecture 2: Review of Probability 26 / 66



The marginal probability distribution

@ The marginal probability distribution of a random variable X is simply
the probability distribution of its own.

@ For a discrete random variable, we can compute the marginal
distribution of X as

n

Pr(X =x) =Y Pr(X,Y =yi) = > p(x, )

i=1 i=1

@ For a continuous random variable, the marginal distribution is

)= [ rixy)dy

— 00
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Two Random Variables

An example of joint and marginal distributions

Table: Joint and marginal distributions of raining and commuting time

Rain (X =0) Norain (X =1) Total

Long commute (Y = 0) 0.15 0.07 0.22
Short commute (Y = 1) 0.15 0.63 0.78
Total 0.30 0.70 1
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Conditional probability

@ For any two events A and B, the conditional probability of A given B

is defined as Pr(AN B)
r(AN
Pr(AlB) = ————~
<
A B
ANB
P(AIB) = P(J;“(;)B)
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The conditional probability distribution

@ The conditional distribution of a random variable Y given another
random variable X is Pr(Y|X = x).

@ The formula to compute it is

Pr(X = x,Y)

Pr(Y|X =x) = Pr(X = )

@ For continuous random variables X and Y, we define the conditional
density function as

f(x,y)
fx(x)

Flylx) =
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Two Random Variables

The conditional expectation

@ The conditional expectation of Y given X is the expected value of the
conditional distribution of Y given X.

@ For discrete random variables, the conditional mean of Y given X = x
is

n
E(Y | X=x)=)Y yPr(Y =y | X=x)
i=1
@ For continuous random variables, it is computed as
o
/ yf(y | x)dy
—o0

@ The expected mean of commuting time given it is raining is
0x0.1+1x0.9=0.9.
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Two Random Variables

The law of iterated expectation

@ The law of iterated expectation:

E(Y) = E[E(Y|X)]

@ It says that the mean of Y is the weighted average of the conditional
expectation of Y given X, weighted by the probability distribution of
X. That is,

E(Y)=> E(Y | X =x)Pr(X = x)
i=1

o If E(X|Y) =0, then E(X) = E[E(X|Y)] = 0.
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Two Random Variables

Conditional variance

o With the conditional mean of Y given X, we can compute the
conditional variance as

Var(Y | X = x) = Z[y, E(Y | X =x)PPr(Y =y | X = x)

@ From the law of iterated expectation, we can get the following

Var(Y) = E(Var(Y | X)) + Var(E(Y | X))
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Two Random Variables

Independent random variables

@ Two random variables X and Y are independently distributed, or
independent, if knowing the value of one of the variable provides no
information about the other.

@ Mathematically, it means that
Pr(Y=y | X=x)=Pr(Y =y)
o If X and Y are independent

Pr(Y =y, X =x) =Pr(X =x)Pr(Y =y)
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Two Random Variables

Independence between two continuous random variable

@ For two continuous random variables, X and Y/, they are independent
if
F(xly) = fx(x) or f(y|x) = fy(y)

@ It follows that if X and Y are independent

f(x,y) = f(x|y)fy(y) = fx(x)fy(y)
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RRVRRENT T MYEEIEI  Covariance and Correlation

Covariance

@ The covariance of two discrete random variables X and Y is
Cov(X,Y) =oxy = E(X — ux)(Y — py)

_ZZ —puy)Pr(X =x;, Y = y))

i=1 j=1

@ For continous random variables, the covariance of X and Y is
CoetX, V) = [ [ (x= ma)ly = )l )y

@ The covariance can also be computed as

Cov(X, Y) = E(XY) — E(X)E(Y)
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36 / 66



RRVRRENT T MYEEIEI  Covariance and Correlation

Correlation coefficient

@ The correlation coefficient of X and Y is

Cov(X,Y) _ oxy
[Var(X)Var(Y)]Y?  oxoy

corr(X,Y) = pxy =

o —1<corr(X,Y) <1
e corr(X,Y) =0 (or Cov(X,Y) =0) means that X and Y are
uncorrelated.

@ Since Cov(X,Y) =E(XY)—E(X)E(Y), when X and Y are
uncorrelated, then E(XY) = E(X)E(Y).
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RRVRRENT T MYEEIEI  Covariance and Correlation

Independence and uncorrelation

e If X and Y are independent, then

Cov(X,Y) = ZZ — py)Pr(X = xi)Pr(Y = y;)

i=1 j=1
m
Z — px)Pr(X = x; Z — py)Pr(Y =y;)
j=1
=0x0=0

@ Thatis, if X and Y are independent, they must be uncorrelated.

@ However, the converse is not true. If X and Y are uncorrelated, there
is a possibility that they are actually dependent.
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RRVRRENT T MYEEIEI  Covariance and Correlation

Conditional mean and correlation

e If X and Y are independent, then we must have
B(Y | X) = B(Y) = py

@ Then, we can prove that Cov(X, Y) =0 and corr(X, Y) = 0.

E(XY) = E(E(XY | X)) = E(XE(Y | X))
= E(X)E(Y | X) = E(X)E(Y)

It follows that Cov(X,Y) = E(XY) - E(X)E(Y) =0 and
corr(X,Y) = 0.
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RRVRRENT T MYEEIEI  Covariance and Correlation

Some useful operations

The following properties of E(-), Var(-) and Cov(-) are useful in
calculation,

E(a+ bX +¢cY)=a+ bux + cuy
Var(aX + bY) = a’0% + b*0% + 2aboxy
Cov(a + bX + ¢V, Y) = boxy + coyy
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Four Specific Distributions

The normal distribution

The normal distribution
@ The p.d.f. of a normally distributed random variable X is

L[]

f(x) =

oV 2T 2072

o E(X) = u and Var(X) = 02, and we write X ~ N(y,0?)

The standard normal distribution
@ The standard normal distribution has 4 =0 and o = 1. The p.d.f of
the standard normal distribution is

o) = = (—f)

@ The c.d.f of the standard normal distribution is often denoted as ®(x).
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Four Specific Distributions

Symmetric and skinny tails

@ The normal distribution is symmetric around its mean, u, with the
skewness equal 0

@ It has 95% of its probability between 1 — 1.960 and u + 1.960, with
the kurtosis equal 3.
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Four Specific Distributions

The p.d.f. of the normal distribution

The
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Four Specific Distributions

Transforming a normally distributed random variable to the
standard normal distribution

@ Let X be a random variable with a normal distribution, i.e.,
X ~ N(u,0?).

e We compute Z = (X — u)/o, which follows the standard normal
distribution, N(0,1).

e For example, if X ~ N(1,4), then Z = (X —1)/2 ~ N(O,

1). When
we want to find Pr(X < 4), we only need to compute $(3/2)
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Four Specific Distributions

Transforming a normally distributed random variable to the
standard normal distribution

e Generally, for any two number ¢; < ¢; and let di = (¢; — 1) /o and
dr = (2 — p)/o, we have
PI(X < C2) = PT(Z < d2) = d)(dz)
Pr(X>c)=Pr(Z>d)=1—-®(d1)
PI"(Cl < X < C2) = Pr(d1 < Z < d2) = ¢(d2) — q)(dl)
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Four Specific Distributions

The multivariate normal distribution

@ The multivariate normal distribution is the joint distribution of a set of
random variables.

@ The p.d.f. of the multivariate normal distribution is beyond the scope
of this course, but the following properties make this distribution
handy in analysis.
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Four Specific Distributions

Important properties of the multivariate normal distribution

@ If n random variables, x1, ..., x,, have a multivariate normal
distribution, then any linear combination of these variables is normally
distributed. For any real numbers, ag, ..., «,, a linear combination of
X is Zi QiXj.

@ If a set of random variables has a multivariate normal distribution,
then the marginal distribution of each of the variables is normal.

o If random variables with a multivariate normal distribution have
covariances that equal zero, then these random variables are
independent.

o If X and Y have a bivariate normal distribution, then
E(Y|X = x) = a+ bx, where a and b are constants.
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The chi-squared distribution

@ Let Zy,...,Z, be n indepenent standard normal distribution, i.e.
Z; ~ N(0,1) for all i=1,...,n. Then, the random variable

W= zn:z,?
i=1

has a chi-squared distribution with n degrees of freedom, denoted as
W ~ x2(n), with E(W) = n and Var(W) = 2n

o If Z~ N(0,1), then W = Z2 ~ x?(1) with E(W) =1 and
Var(W) = 2.
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The p.d.f. of chi-squared distributions

Chi Squared Distribution PDF
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Figure: The probability density function of chi-squared distributions
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The student t distribution

o Let Z ~ N(0,1), W ~ x?(m), and Z and W be independently
distributed. Then, the random variable

_ Z

VW/m

has a student t distribution with m degrees of freedom, denoted as
t ~ t(m).
@ As nincreases, t gets close to a standard normal distribution.
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The p.d.f. of student t distributions

Students T Distribution PDF
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Figure: The probability density function of student t distributions
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The F distribution

o Let Wi ~ x?(n1), Wa ~ x?(n2), and Wy and W, are independent.
Then, the random variable

o Wl/nl

F =
W2/n2

has an F distribution with (n1, ny) degrees of freedom, denoted as
F ~ F(nl, n2)

o If t ~ t(n), then t> ~ F(1, n)
e As ny — o0, the F(ny,00) distribution is the same as the x?(ny)
distribution divided by nj.
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The p.d.f. of F distributions

F Distribution PDF
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Aveage Random sampling

Simple random sampling

@ A population is a set of similar items or events which is of interest for
some question or experiment.

@ Simple random sampling is a procedure in which n objects are selected
at random from a population, and each member of the population is
equally likely to be included in the sample.

@ Let Y1, Ys,...Y, be the first n observations in a random sample.
Since they are randomly drawn from a population, Y7,...,Y, are
random variables.
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Aveage Random sampling

I.i.d draws
@ Since Y1, Ya,..., Y, are drawn from the same population, the
marginal distribution of Y; is the same for each i = 1,..., n, which are

said to be identically distributed.

@ With simple random sampling, the value of Y; does not depend on
that of Y} for i # j, which are said to independent distributed.

@ Therefore, when Y7,..., Y, are drawn with simple random sampling
from the same distribution of Y, we say that they are independently
and identically distributed or i.i.d, which is denoted as

Y; ~ IID(py,0%) fori=1,2,....n

given that the population expectation is uy and the variance is a%,.
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Aveage The sampling distribution of the sample average

The sample average

@ The sample average or sample mean, Y, of the n observations
Yl,Yg,...,Yn is
— 1
Y — =
; Z

e When Yi,...,Y, are randomly drawn, Y is also a random variable
that should have its own distribution, called the sampling distribution.
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Aveage The sampling distribution of the sample average

The mean and variance of Y

o Suppose that Y; ~ lID(uy,0%) forall i =1,...,n. Then

E(Y) = uy ZE *”MY—HY
and

2
Var(Y) = Z Var(Y;) + 2 Z Cov(Y, =7y
i=1 j=1

@ The standard deviation of the sample mean is oy, = oy /\/n.
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Aveage The sampling distribution of the sample average

Sampling distribution of Y when Y is normally distributed

o When Y1,..., Y, are i.id. draws from N(uy,0%), from the properties

of the multivariate normal distribution, Y is normally distributed.
That is

Y ~ N(uy, 0% /n)
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The exact distribution and the asymptotic distribution

@ The sampling distribution that exactly describes the distribution of Y
for any n is called the exact distribution or finite-sample distribution.

@ However, in most cases, we cannot obtain an exact distribution of Y,
for which we can only get an approximation.

@ The large-sample approximation to the sampling distribution is called
the asymptotic distribution.
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Large Sample Approximations to Sampling Distributions [EEECREVVRCEEYS- W T ]I

Convergence in probability

o Let S1,...,S, be a sequence of random variables, denoted as {S,}.
{S,} is said to converge in probability to a limit u (denoted as

Sn 2 1), if and only if
Pr(|Sp—p| <d)—1

as n — oo for every 6 > 0.
e For example, S, =Y. Thatis, S = Y1, S = 1/2(Y1 + Y2),
S, =1/n>;Yi, and so forth.
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Large Sample Approximations to Sampling Distributions [EEECREVVRCEEYS- W T ]I

The law of large numbers

@ The law of large numbers (LLN) states that if Yi,...,Y, are i.i.d.
with E(Y;) = py and Var(Y;) < oo, then Y 25 11y
@ The conditions for the LLN to be held is Y; for i =1,...,n arei.id.,

and the variance of Y; is finite. The latter says that there is no
extremely large outliers in the random samples.
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The law of large numbers
The LLN illustrated
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Figure: An illustration of the law of large numbers
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Large Sample Approximations to Sampling Distributions [T E] W Ty i AR )

Convergence in distribution

e Let Fi, Fy,..., F, be a sequence of cumulative distribution functions
corresponding to a sequence of random variables, 51, 5;,...,5,. Then
the sequence of random variables S, is said to converge in distribution

to a random variable S (denoted as S, LN S), if the distribution
functions {F,} converge to F that is the distribution function of S.
We can write it as

Sn 2 S if and only if lim Fa(x) = F(x)

@ The distribution F is called the asymptotic distribution of Sj,.
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The central limit theorem (Lindeberg-Levy CLT)

@ The CLT states that if Y7, Ya,..., Y, are i.i.d. random samples from

a probability distribution with finite mean iy and finite variance oy,
ie,0<o0% <ocoand Y= (1/n)>"Y;. Then

V(Y = py) & N0, 0%)
o It follows that since oy = \/Var(Y) = oy /y/n,
Y

I T HY d N(0,1)
Oy
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The central limit theorem

The CLT illustrated

Probability
Probability
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lllustrations with Wolfram CDF player

@ To view the following demonstrations, first you need to download
them by saving into your disk, then open them with Wolfram CDF
Player that can be downloaded from
http://www.wolfram.com/cdf-player/

@ Here is another demonstration of the law of large number,
I1lustratingThelLawOfLargeNumbers.cdf.

@ Here is the demonstration of the CLT with Wolfram CDF Player,
I1lustratingTheCentrallimitTheoremWithSumsOfBernoulliRandor
cdf.

Zheng Tian Lecture 2: Review of Probability 66 / 66


http://www.wolfram.com/cdf-player/
IllustratingTheLawOfLargeNumbers.cdf
IllustratingTheCentralLimitTheoremWithSumsOfBernoulliRandomV.cdf
IllustratingTheCentralLimitTheoremWithSumsOfBernoulliRandomV.cdf

