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Random Variables and Probability Distributions Defining probabilities and random variables

Experiments and outcomes

An experiment is the processes that generate random results
The outcomes of an experiment are its mutually exclusive potential
results.
Example: tossing a coin. The outcome is either getting a head(H) or a
tail(T) but not both.
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Random Variables and Probability Distributions Defining probabilities and random variables

Sample space and events

A sample space consists of all the outcomes from an experiment,
denoted with the set S .

S = {H,T} in the tossing-coin experiment.

An event is a subset of the sample space.
Getting a head is an event, which is {H} ⊂ {H,T}.
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Random Variables and Probability Distributions Probability

An intuitive definition of probability

The probability of an event is the proportion of the time that the
event will occur in the long run.
For example, we toss a coin for n times and get m heads. When n is
very large, we can say that the probability of getting a head in a toss
is m/n.
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Random Variables and Probability Distributions Probability

An axiomatic definition of probability

A probability of an event A in the sample space S , denoted as Pr(A),
is a function that assign A a real number in [0, 1], satisfying the
following three conditions:

1 0 ≤ Pr(A) ≤ 1.
2 Pr(S) = 1.
3 For any disjoint sets, A and B, that is A and B have no element in

common, Pr(A ∪ B) = Pr(A) + Pr(B).
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Random Variables and Probability Distributions Random variables

The definition of random variables

A random variable is a numerical summary associated with the
outcomes of an experiment.
You can also think of a random variable as a function mapping from
an event ω in the sample space Ω to the real line.
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Random Variables and Probability Distributions Random variables

An illustration of random variables

Figure: An illustration of random variable
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Random Variables and Probability Distributions Random variables

Discrete and continuous random variables

Random variables can take different types of values

A discrete random variables takes on a discrete set of values, like
0, 1, 2, . . . , n
A continuous random variable takes on a continuum of possble values,
like any value in the interval (a, b).
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Random Variables and Probability Distributions Probability distributions

The probability distribution for a discrete random variable

The probability distribution of a discrete random variable is the list of
all possible values of the variable and the probability that each value
will occur. These probabilities sum to 1.
The probability mass function. Let X be a discrete random variable.
The probability distribution of X (or the probability mass function),
p(x), is

p(x) = Pr(X = x)

The axioms of probability require that
1 0 ≤ p(x) ≤ 1
2 2)

∑n
i=1 p(xi ) = 1.
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Random Variables and Probability Distributions Probability distributions

An example of the probability distribution of a discrete
random variable

Table: An illustration of the probability distribution of a discrete random variable

X 1 2 3 Sum
P(x) 0.25 0.50 0.25 1.
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Random Variables and Probability Distributions The cumulative probability distribution

Definition of the c.d.f.

The cumulative probability distribution (or the cumulative distribution
function, c.d.f.):
Let F (x) be the c.d.f of X . Then F (x) = Pr(X ≤ x).

Table: An illustration of the c.d.f. of a discrete random variable

X 1 2 3 Sum
P(x) 0.25 0.50 0.25 1
C.d.f. 0.25 0.75 1 –
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Random Variables and Probability Distributions The cumulative probability distribution

An illustration of the c.d.f. of a discrete random variable

Figure: The c.d.f. of a discrete random variable

Zheng Tian Lecture 2: Review of Probability 13 / 66



Random Variables and Probability Distributions The cumulative probability distribution

Bernouli distribution

The Bernoulli distribution

G =

{
1 with probability p

0 with probability 1− p
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Random Variables and Probability Distributions The probability distribution of a continuous random variable

Definition of the c.d.f. and the p.d.f.

The cumulative distribution function of a continous random variable is
defined as it is for a discrete random variable.

F (x) = Pr(X ≤ x)

The probability density function (p.d.f.) of X is the function that
satisfies

F (x) =

∫ x

−∞
f (t)dt for all x
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Random Variables and Probability Distributions The probability distribution of a continuous random variable

Properties of the c.d.f.

For both discrete and continuous random variable, F (X ) must satisfy
the following properties:

1 F (+∞) = 1 and F (−∞) = 0 (F (x) is bounded between 0 and 1)
2 x > y ⇒ F (x) ≥ F (y) (F (x) is nondecreasing)

By the definition of the c.d.f., we can conveniently calculate
probabilities, such as,

P(x > a) = 1− P(x ≤ a) = 1− F (a)
P(a < x ≤ b) = F (b)− F (a).
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Random Variables and Probability Distributions The probability distribution of a continuous random variable

The c.d.f. and p.d.f. of a normal distribution

Figure: The p.d.f. and c.d.f. of a continuous random variable (the normal
distribution)
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Expectation, Variance, and Other Moments The expected value of a random variable

The expected value

The expected value of a random variable, X, denoted as E(X ), is the
long-run average of the random variable over many repeated trials or
occurrences, which is also called the expectation or the mean.
The expected value measures the centrality of a random variable.
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Expectation, Variance, and Other Moments The expected value of a random variable

Mathematical definition

For a discrete random variable

E(X ) =
n∑

i=1

xiPr(X = xi )

e.g. The expectation of a Bernoulli random variable, G ,

E(G ) = 1 · p + 0 · (1− p) = p

For a continuous random variable

E(X ) =

∫ ∞
−∞

xf (x)dx
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Expectation, Variance, and Other Moments The variance and standard deviation

Definition of variance and standard deviation

The variance of a random variable X measures its average deviation
from its own expected value.
Let E(X ) = µX . Then the variance of X ,

Var(X ) = σ2
X = E(X − µX )2

=

{∑n
i=1(xi − µX )2Pr(X = xi ) if X is discrete∫∞
−∞(x − µX )2f (x)dx if X is continuous

The standard deviation of X : σX =
√

Var(X )
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Expectation, Variance, and Other Moments The variance and standard deviation

Computing variance

A convenient formula for calculating the variance is

Var(X ) = E(X − µX )2 = E(X 2)− µ2
X

The variance of a Bernoulli random variable, G

Var(G ) = (1− p)2p + (0− p)2(1− p) = p(1− p)

The expectation and variance of a linear function of X . Let
Y = a + bX , then

E(Y ) = a + bE(X )
Var(Y ) = Var(a + bX ) = b2Var(X ).
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Expectation, Variance, and Other Moments Moments of a random variable, skewness and kurtosis

Definition of the moments of a distribution

kth moment The kth moment of the distribution of X is E(X k). So, the
expectation is the "first" moment of X .

kth central moment The kth central moment of the distribution of X with
its mean µX is E(X − µX )k . So, the variance is the second
central moment of X .

A caveat
It is important to remember that not all the moments of a distribution exist.
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Expectation, Variance, and Other Moments Moments of a random variable, skewness and kurtosis

Skewness

The skewness of a distribution provides a mathematical way to
describe how much a distribution deviates from symmetry.

Skewness = E(X − µX )3/σ3
X

A symmetric distribution has a skewness of zero.
The skewness can be either positive or negative.
That E(X − µX )3 is divided by σ3

X is to make the skewness measure
unit free.
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Expectation, Variance, and Other Moments Moments of a random variable, skewness and kurtosis

Kurtosis

The kurtosis of the distribution of a random variable X measures how
much of the variance of X arises from extreme values, which makes
the distribution have "heavy" tails.

Kurtosis = E(X − µX )4/σ4
X

The kurtosis must be positive.
The kurtosis of the normal distribution is 3. So a distribution that has
its kurtosis exceeding 3 is called heavy-tailed.
The kurtosis is also unit free.
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Expectation, Variance, and Other Moments Moments of a random variable, skewness and kurtosis

An illustration of skewness and kurtosis

All four distributions have a mean of zero and a variance of one, while
(a) and (b) are symmetric and (b)-(d) are heavy-tailed.
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Two Random Variables

The joint and marginal distributions

The joint probability function of two discrete random variables
The joint distribution of two random variables X and Y is

p(x , y) = Pr(X = x ,Y = y)

p(x , y) must satisfy
1 p(x , y) ≥ 0
2
∑n

i=1
∑m

j=1 p(xi , yj) = 1 for all possible combinations of values of X
and Y .

The joint probability function of two continuous random variables
For two continuous random variables, X and Y , the counterpart of
p(x , y) is the joint probability density function, f (x , y), such that

1 f (x , y) ≥ 0
2
∫∞
−∞

∫∞
−∞ f (x , y) dx dy = 1
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Two Random Variables

The marginal probability distribution

The marginal probability distribution of a random variable X is simply
the probability distribution of its own.
For a discrete random variable, we can compute the marginal
distribution of X as

Pr(X = x) =
n∑

i=1

Pr(X ,Y = yi ) =
n∑

i=1

p(x , yi )

For a continuous random variable, the marginal distribution is

fX (x) =

∫ ∞
−∞

f (x , y) dy
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Two Random Variables

An example of joint and marginal distributions

Table: Joint and marginal distributions of raining and commuting time

Rain (X = 0) No rain (X = 1) Total
Long commute (Y = 0) 0.15 0.07 0.22
Short commute (Y = 1) 0.15 0.63 0.78
Total 0.30 0.70 1
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Two Random Variables

Conditional probability

For any two events A and B , the conditional probability of A given B
is defined as

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
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Two Random Variables

The conditional probability distribution

The conditional distribution of a random variable Y given another
random variable X is Pr(Y |X = x).
The formula to compute it is

Pr(Y |X = x) =
Pr(X = x ,Y )

Pr(X = x)

For continuous random variables X and Y , we define the conditional
density function as

f (y |x) =
f (x , y)

fX (x)
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Two Random Variables

The conditional expectation

The conditional expectation of Y given X is the expected value of the
conditional distribution of Y given X .
For discrete random variables, the conditional mean of Y given X = x
is

E(Y | X = x) =
n∑

i=1

yiPr(Y = yi | X = x)

For continuous random variables, it is computed as∫ ∞
−∞

yf (y | x) dy

The expected mean of commuting time given it is raining is
0× 0.1 + 1× 0.9 = 0.9.
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Two Random Variables

The law of iterated expectation

The law of iterated expectation:

E(Y ) = E [E(Y |X )]

It says that the mean of Y is the weighted average of the conditional
expectation of Y given X , weighted by the probability distribution of
X . That is,

E(Y ) =
n∑

i=1

E(Y | X = xi )Pr(X = xi )

If E(X |Y ) = 0, then E(X ) = E [E(X |Y )] = 0.
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Two Random Variables

Conditional variance

With the conditional mean of Y given X , we can compute the
conditional variance as

Var(Y | X = x) =
n∑

i=1

[yi − E(Y | X = x)]2 Pr(Y = yi | X = x)

From the law of iterated expectation, we can get the following

Var(Y ) = E(Var(Y | X )) + Var(E(Y | X ))
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Two Random Variables

Independent random variables

Two random variables X and Y are independently distributed, or
independent, if knowing the value of one of the variable provides no
information about the other.
Mathematically, it means that

Pr(Y = y | X = x) = Pr(Y = y)

If X and Y are independent

Pr(Y = y ,X = x) = Pr(X = x)Pr(Y = y)
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Two Random Variables

Independence between two continuous random variable

For two continuous random variables, X and Y , they are independent
if

f (x |y) = fX (x) or f (y |x) = fY (y)

It follows that if X and Y are independent

f (x , y) = f (x |y)fY (y) = fX (x)fY (y)
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Two Random Variables Covariance and Correlation

Covariance

The covariance of two discrete random variables X and Y is

Cov(X ,Y ) = σXY = E(X − µX )(Y − µY )

=
n∑

i=1

m∑
j=1

(xi − µX )(yj − µY )Pr(X = xi ,Y = yj)

For continous random variables, the covariance of X and Y is

Cov(X ,Y ) =

∫ ∞
−∞

∫ ∞
−∞

(x − µX )(y − µy )f (x , y)dxdy

The covariance can also be computed as

Cov(X ,Y ) = E(XY )− E(X )E(Y )
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Two Random Variables Covariance and Correlation

Correlation coefficient

The correlation coefficient of X and Y is

corr(X ,Y ) = ρXY =
Cov(X ,Y )

[Var(X )Var(Y )]1/2
=

σXY
σXσY

−1 ≤ corr(X ,Y ) ≤ 1.
corr(X ,Y ) = 0 (or Cov(X ,Y ) = 0) means that X and Y are
uncorrelated.
Since Cov(X ,Y ) = E(XY )− E(X )E(Y ), when X and Y are
uncorrelated, then E(XY ) = E(X )E(Y ).
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Two Random Variables Covariance and Correlation

Independence and uncorrelation

If X and Y are independent, then

Cov(X ,Y ) =
n∑

i=1

m∑
j=1

(xi − µX )(yj − µY )Pr(X = xi )Pr(Y = yj)

=
n∑

i=1

(xi − µX )Pr(X = xi )
m∑
j=1

(yj − µy )Pr(Y = yj)

= 0× 0 = 0

That is, if X and Y are independent, they must be uncorrelated.
However, the converse is not true. If X and Y are uncorrelated, there
is a possibility that they are actually dependent.
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Two Random Variables Covariance and Correlation

Conditional mean and correlation

If X and Y are independent, then we must have
E(Y | X ) = E(Y ) = µY

Then, we can prove that Cov(X ,Y ) = 0 and corr(X ,Y ) = 0.

E(XY ) = E(E(XY | X )) = E(XE(Y | X ))

= E(X )E(Y | X ) = E(X )E(Y )

It follows that Cov(X ,Y ) = E(XY )− E(X )E(Y ) = 0 and
corr(X ,Y ) = 0.
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Two Random Variables Covariance and Correlation

Some useful operations

The following properties of E(·), Var(·) and Cov(·) are useful in
calculation,

E(a + bX + cY ) = a + bµX + cµY

Var(aX + bY ) = a2σ2
X + b2σ2

Y + 2abσXY
Cov(a + bX + cV ,Y ) = bσXY + cσVY
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Four Specific Distributions

The normal distribution

The normal distribution
The p.d.f. of a normally distributed random variable X is

f (x) =
1

σ
√
2π

exp
[
−(x − µ)2

2σ2

]
E(X ) = µ and Var(X ) = σ2, and we write X ∼ N(µ, σ2)

The standard normal distribution
The standard normal distribution has µ = 0 and σ = 1. The p.d.f of
the standard normal distribution is

φ(x) =
1√
2π

exp
(
−x2

2

)
The c.d.f of the standard normal distribution is often denoted as Φ(x).
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Four Specific Distributions

Symmetric and skinny tails

The normal distribution is symmetric around its mean, µ, with the
skewness equal 0
It has 95% of its probability between µ− 1.96σ and µ+ 1.96σ, with
the kurtosis equal 3.
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Four Specific Distributions

The p.d.f. of the normal distribution

Figure: The normal probability density
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Four Specific Distributions

Transforming a normally distributed random variable to the
standard normal distribution

Let X be a random variable with a normal distribution, i.e.,
X ∼ N(µ, σ2).
We compute Z = (X − µ)/σ, which follows the standard normal
distribution, N(0, 1).
For example, if X ∼ N(1, 4), then Z = (X − 1)/2 ∼ N(0, 1). When
we want to find Pr(X ≤ 4), we only need to compute Φ(3/2)
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Four Specific Distributions

Transforming a normally distributed random variable to the
standard normal distribution

Generally, for any two number c1 < c2 and let d1 = (c1 − µ)/σ and
d2 = (c2 − µ)/σ, we have

Pr(X ≤ c2) = Pr(Z ≤ d2) = Φ(d2)

Pr(X ≥ c1) = Pr(Z ≥ d1) = 1− Φ(d1)

Pr(c1 ≤ X ≤ c2) = Pr(d1 ≤ Z ≤ d2) = Φ(d2)− Φ(d1)
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Four Specific Distributions

The multivariate normal distribution

The multivariate normal distribution is the joint distribution of a set of
random variables.
The p.d.f. of the multivariate normal distribution is beyond the scope
of this course, but the following properties make this distribution
handy in analysis.
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Four Specific Distributions

Important properties of the multivariate normal distribution

If n random variables, x1, . . . , xn, have a multivariate normal
distribution, then any linear combination of these variables is normally
distributed. For any real numbers, α1, . . . , αn, a linear combination of
xi is

∑
i αixi .

If a set of random variables has a multivariate normal distribution,
then the marginal distribution of each of the variables is normal.
If random variables with a multivariate normal distribution have
covariances that equal zero, then these random variables are
independent.
If X and Y have a bivariate normal distribution, then
E(Y |X = x) = a + bx , where a and b are constants.
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Four Specific Distributions

The chi-squared distribution

Let Z1, . . . ,Zn be n indepenent standard normal distribution, i.e.
Zi ∼ N(0, 1) for all i = 1, . . . , n. Then, the random variable

W =
n∑

i=1

Z 2
i

has a chi-squared distribution with n degrees of freedom, denoted as
W ∼ χ2(n), with E(W ) = n and Var(W ) = 2n
If Z ∼ N(0, 1), then W = Z 2 ∼ χ2(1) with E(W ) = 1 and
Var(W ) = 2.
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Four Specific Distributions

The p.d.f. of chi-squared distributions

Figure: The probability density function of chi-squared distributions
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Four Specific Distributions

The student t distribution

Let Z ∼ N(0, 1), W ∼ χ2(m), and Z and W be independently
distributed. Then, the random variable

t =
Z√
W /m

has a student t distribution with m degrees of freedom, denoted as
t ∼ t(m).
As n increases, t gets close to a standard normal distribution.
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Four Specific Distributions

The p.d.f. of student t distributions

Figure: The probability density function of student t distributions
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Four Specific Distributions

The F distribution

Let W1 ∼ χ2(n1), W2 ∼ χ2(n2), and W1 and W2 are independent.
Then, the random variable

F =
W1/n1

W2/n2

has an F distribution with (n1, n2) degrees of freedom, denoted as
F ∼ F (n1, n2)

If t ∼ t(n), then t2 ∼ F (1, n)

As n2 →∞, the F (n1,∞) distribution is the same as the χ2(n1)
distribution divided by n1.
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Four Specific Distributions

The p.d.f. of F distributions

Figure: The probability density function of F distributions

Zheng Tian Lecture 2: Review of Probability 53 / 66



Random Sampling and the Distribution of the Sample
Average Random sampling

Simple random sampling

A population is a set of similar items or events which is of interest for
some question or experiment.
Simple random sampling is a procedure in which n objects are selected
at random from a population, and each member of the population is
equally likely to be included in the sample.
Let Y1,Y2, . . .Yn be the first n observations in a random sample.
Since they are randomly drawn from a population, Y1, . . . ,Yn are
random variables.
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Random Sampling and the Distribution of the Sample
Average Random sampling

i.i.d draws

Since Y1,Y2, . . . ,Yn are drawn from the same population, the
marginal distribution of Yi is the same for each i = 1, . . . , n, which are
said to be identically distributed.
With simple random sampling, the value of Yi does not depend on
that of Yj for i 6= j , which are said to independent distributed.
Therefore, when Y1, . . . ,Yn are drawn with simple random sampling
from the same distribution of Y , we say that they are independently
and identically distributed or i.i.d, which is denoted as

Yi ∼ IID(µY , σ
2
Y ) for i = 1, 2, . . . , n

given that the population expectation is µY and the variance is σ2
Y .
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Random Sampling and the Distribution of the Sample
Average The sampling distribution of the sample average

The sample average

The sample average or sample mean, Y , of the n observations
Y1,Y2, . . . ,Yn is

Y =
1
n

n∑
i=1

Yi

When Y1, . . . ,Yn are randomly drawn, Y is also a random variable
that should have its own distribution, called the sampling distribution.
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Random Sampling and the Distribution of the Sample
Average The sampling distribution of the sample average

The mean and variance of Y

Suppose that Yi ∼ IID(µY , σ
2
Y ) for all i = 1, . . . , n. Then

E(Y ) = µY =
1
n

n∑
i=1

E(Yi ) =
1
n
nµY = µY

and

Var(Y ) = σ2
Y

=
1
n2

n∑
i=1

Var(Yi ) +
1
n2

n∑
i=1

n∑
j=1

Cov(Yi ,Yj) =
σ2
Y

n

The standard deviation of the sample mean is σY = σY /
√
n.
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Random Sampling and the Distribution of the Sample
Average The sampling distribution of the sample average

Sampling distribution of Y when Y is normally distributed

When Y1, . . . ,Yn are i.i.d. draws from N(µY , σ
2
Y ), from the properties

of the multivariate normal distribution, Y is normally distributed.
That is

Y ∼ N(µY , σ
2
Y /n)

Zheng Tian Lecture 2: Review of Probability 58 / 66



Large Sample Approximations to Sampling Distributions

The exact distribution and the asymptotic distribution

The sampling distribution that exactly describes the distribution of Y
for any n is called the exact distribution or finite-sample distribution.
However, in most cases, we cannot obtain an exact distribution of Y ,
for which we can only get an approximation.
The large-sample approximation to the sampling distribution is called
the asymptotic distribution.
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Large Sample Approximations to Sampling Distributions The law of large numbers

Convergence in probability

Let S1, . . . ,Sn be a sequence of random variables, denoted as {Sn}.
{Sn} is said to converge in probability to a limit µ (denoted as
Sn

p−→ µ), if and only if

Pr (|Sn − µ| < δ)→ 1

as n→∞ for every δ > 0.
For example, Sn = Y . That is, S1 = Y1, S2 = 1/2(Y1 + Y2),
Sn = 1/n

∑
i Yi , and so forth.
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Large Sample Approximations to Sampling Distributions The law of large numbers

The law of large numbers

The law of large numbers (LLN) states that if Y1, . . . ,Yn are i.i.d.
with E(Yi ) = µY and Var(Yi ) <∞, then Y

p−→ µY .
The conditions for the LLN to be held is Yi for i = 1, . . . , n are i.i.d.,
and the variance of Yi is finite. The latter says that there is no
extremely large outliers in the random samples.

Zheng Tian Lecture 2: Review of Probability 61 / 66



Large Sample Approximations to Sampling Distributions The law of large numbers

The LLN illustrated

Figure: An illustration of the law of large numbers
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Large Sample Approximations to Sampling Distributions The central limit theorem

Convergence in distribution

Let F1,F2, . . . ,Fn be a sequence of cumulative distribution functions
corresponding to a sequence of random variables, S1,S2, . . . ,Sn. Then
the sequence of random variables Sn is said to converge in distribution
to a random variable S (denoted as Sn

d−→ S), if the distribution
functions {Fn} converge to F that is the distribution function of S .
We can write it as

Sn
d−→ S if and only if lim

n→∞
Fn(x) = F (x)

The distribution F is called the asymptotic distribution of Sn.
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Large Sample Approximations to Sampling Distributions The central limit theorem

The central limit theorem (Lindeberg-Levy CLT)

The CLT states that if Y1,Y2, . . . ,Yn are i.i.d. random samples from
a probability distribution with finite mean µY and finite variance σ2

Y ,
i.e., 0 < σ2

Y <∞ and Y = (1/n)
∑n

i Yi . Then

√
n(Y − µY )

d−→ N(0, σ2
Y )

It follows that since σY =
√

Var(Y ) = σY /
√
n,

Y − µY
σY

d−→ N(0, 1)

Zheng Tian Lecture 2: Review of Probability 64 / 66



Large Sample Approximations to Sampling Distributions The central limit theorem

The CLT illustrated

Figure: An illustration of the central limit theoremZheng Tian Lecture 2: Review of Probability 65 / 66
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Illustrations with Wolfram CDF player

To view the following demonstrations, first you need to download
them by saving into your disk, then open them with Wolfram CDF
Player that can be downloaded from
http://www.wolfram.com/cdf-player/.
Here is another demonstration of the law of large number,
IllustratingTheLawOfLargeNumbers.cdf.
Here is the demonstration of the CLT with Wolfram CDF Player,
IllustratingTheCentralLimitTheoremWithSumsOfBernoulliRandomV.
cdf.
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