
Lecture 11: Assessing Studies Based on Multiple Regression

Zheng Tian

1 Introduction

1.1 Overview

The preceding lectures explain how to use multiple regression to analyze the relationship
among variables. In this lecture, we step back and ask, What makes a study that uses
multiple regression reliable? We answer this question by assessing regression analysis
under the framework of internal and external validity.

1.2 Reading materials

• Chapter 9 in Introduction to Econometrics by Stock and Watson.

2 Internal and External Validity

The concepts of internal and external validity provide a general framework for assessing
whether a statistical or econometric study is useful for answering a specific question of
interest. We focus on regression analysis that have the objective of estimating the causal
effect of a change in some independent variable on a dependent variable.

2.1 The population and setting studied versus the population and set-
ting of interest

The population and setting studied

• The population studied is the population of entities-people, companies, school dis-
tricts, and so forth-from which the sample is drawn.

• The setting studied refers to as the institutional, legal, social, and economic envi-
ronment in which the population studied fits in and the sample is drawn.

1



The population and setting of interest

By contrast, the population and setting of interest is the population and setting of entities
to which the causal inferences from the study are to be applied.

2.2 Definition of internal and external validity

• Internal validity: the statistical inferences about causal effects are valid for the
population being studied.

• External validity: the statistical inferences can be generalized from the population
and setting studied to other populations and settings.

2.3 Threats to internal validity

Internal validity consists of two components

• The estimator of the causal effect should be unbiased and consistent.

• Hypothesis tests should have the desired significance level (the actual rejection rate
of the test under the null hypothesis should equal its desired significance level), and
the confidence intervals should have the desired confidence level.

Internal validity in regression analysis

For a regression analysis of casual effects based on the OLS estimation, the requirements
for internal validity are that

1. the OLS estimator is unbiased and consistent, and

2. the standard errors are computed in a way that makes confidence intervals have the
desired confidence level.

2.4 Threats to external validity

Potential threats to external validity arise from differences between the population and
setting studied and the population and setting of interest.
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Differences in populations

The causal effect might not be the same in the population studied and the population of
interest due to their differences in

• demographic and personal characteristics,

• geographic and climate features, and

• timing.

Differences in settings

• Difference in institutional environment, laws, or physical environment.

How to assess the external validity of a study

• External validity must be judged using specific knowledge of the population and
settings studied and those of interest.

• We can compare two or more studies on different but related populations. Formally,
this comparison can be conducted using a meta-analysis.

3 Threats to Internal Validity of Multiple Regression Anal-
ysis

We introduce five threats to the internal validity of regression studies:

1. Omitted variable bias

2. Wrong functional form

3. Errors-in-variables bias

4. Sample selection bias

5. Simultaneous causality bias

All of these imply that E(ui|X1i, . . . , Xki) 6= 0 so as to make the OLS estimators biased
and inconsistent.
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3.1 Omitted variable bias

Recall that omitted variable bias arises when a variable that both determines Y and is
correlated with one or more of the included regressors is omitted from the regression.

Solutions to omitted variable bias when the variable is observed or there are
adequate control variables

• A trade-off between omitted variable bias and the precision of estimators

– If you have the data on the omitted variable, or you have the data on one or
more control variables for an unobserved omitted variable, we can add these
additional regressors to avoid the violation of the first least squares assumption,
E(u|X) = 0 or to let the conditional mean independence assumption hold, i.e.,
E(u|X,W ) = E(u|X), so that the coefficient on the variable of interest is
unbiased and consistent.

– Adding an additional independent variable may reduce the precision of the
estimators of the coefficients when the new variable actually does not belong
to the population regression function (i.e., its population regression coefficient
is zero), or when the new variable is correlated with other regressors, resulting
in imperfect multicollinearity.

Question: Why may adding an irrelevant variable reduce the precision of other
coefficients? (Hint: What does the Gauss-Markov Theorem indicate as for the
variance of the OLS estimators? )

• Some guidelines to decide whether to include an additional variable

1. Identify the key coefficient(s) of interest.

– e.g., the student-teacher ratio in the test score regression.

2. a priori reasoning

– What are the most likely sources of important omitted variable?

– Answer the question using economic theory and expert knowledge.

– Done before analyzing data.

– Result in a base specification and a list of additional questionable variables
that might help mitigate possible omitted variable bias.

3. Augment your base specification with the additional questionable control vari-
ables.
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– If the coefficients on control variables are statistically significant or if the
estimated coefficients of interest change appreciably when control variables
are included, then you should consider modifying the base specification.

– If not, exclude these control variables from the regression.

4. Present an accurate summary of your results in tabular form.

– This provides "full disclosure" to skeptical readers who can draw their
conclusions.

Solutions to omitted variable bias when adequate control variables are not
available

Adding an omitted variable is not an option if you do not have data on that variable and
if there are no adequate control variables. We introduce three ways to circumvent omitted
variable bias.

• Panel data

Panel data (or longitudinal data) consist of observations on the same n entities at
two or more time periods. If the data set contains observations on the variables X
and Y , then the data are denoted

(Xit, Yit), i = 1, . . . , n and t = 1, . . . , T

where the first subscript, i, refers to the entity being observed and the second sub-
script, t, refers to the date at which it is observed.

The key of using panel data regression to circumvent omitted variable bias lies in
the idea that omitted variables that represent personal characteristics do not change
over time so that any changes in Y over time cannot be caused by the omitted
variable.

Suppose we have n entities and T observations for each entity. Xit is the observed
regressor, Yit is the dependent variable, and Zi is the unobserved time-invariant
variable representing idiosyncratic characteristics of entity i. We can set up a linear
regression model as follows

Yit = β0 + β1Xit + β2Zi + uit

This model is a simple representation of the fixed effects panel data regression
model, in which Zi is usually defined as a dummy variable for entity i.

• Instrumental variable
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If the omitted variable(s) cannot be measured, we can use an instrumental variables
(IV) regression. Suppose that in the simple linear regression model

Yi = β0 + β1Xi + ui, i = 1, . . . , n

Xi and ui are correlated due to unobserved omitted variables. Then we can use an
instrumental variable Z to account for the part in X that is correlated with u.

For an instrumental variable Z to be valid, it must satisfy two conditions:

1. Instrument relevance: Corr(Zi, Xi) 6= 0

2. Instrument exogeneity: Corr(Zi, ui) = 0

The model is estimated using the Two-Stage-Least-Squares (TSLS) method which
basically consists of two steps:

Stage 1 Regress Xi on Zi, including an intercept, obtain the predicted values, X̂i.

Stage 2 Regress Yi on X̂i, including an intercept; the coefficient on X̂i is the TSLS
estimator β̂TSLS1 .

• Randomized controlled experiment

The third solution is to use a research design in which the effect of interest is studied
using a randomized controlled experiment. Randomized controlled experiments are
discussed in Chapter 12.

3.2 Misspecification of the functional form of the regression function

• Functional form misspecification arises when the functional form of the estimated
regression function differs from the functional form of the population regression
function.

– e.g., nonlinear vs. linear models

• Functional form misspecification bias can be considered as a type of omitted variable
bias, in which the omitted variables are the terms that reflect the missing nonlinear
aspects of the regression function.

– e.g., missing the quadratic term

Solutions to functional form misspecification

• Plotting the data and the estimated regression function.
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• Use a different functional form.

– Continuous dependent variable: use the “appropriate” nonlinear specifications
in X (logarithms, interactions, etc.)

– Discrete (example: binary) dependent variable: need an extension of multiple
regression methods (“probit” or “logit” analysis for binary dependent variables)

3.3 Measurement error and errors-in-variable bias

Measurement errors often happen in practice. They may come from respondents misstated
answers to survey questions, from typographical errors when data were entered into the
database for the first time, and from the malfunctions of machines when recording data.

Measurement errors can occur in independent variables as well as the dependent variable,
of which their effects on the estimated coefficients depend on the nature of the errors. Let’s
first focus on errors in independent variable, which cause biased estimated coefficients,
referred to as errors-in-variable bias.

Definition of errors-in-variable bias

Errors-in-variables bias in the OLS estimator arises when an independent variable is mea-
sured imprecisely. This bias depends on the nature of the measurement error and persists
even if the sample size is large.

Mathematical illustration

Suppose a regressor Xi is imprecisely measured by X̃i. That means that we observe X̃i

and use it in estimation.

Then consider a simple regression model

Yi = β0 + β1Xi + ui

in which E(ui|Xi) = 0 is satisfied.

Since we use X̃i other than Xi in estimation, we rewrite the model in terms of X̃i, that is,

Yi = β0 + β1X̃i + [β1(Xi − X̃i) + ui]

= β0 + β1X̃i + vi
(1)

where vi = β1(Xi − X̃i) + ui in which we define the measurement error as wi = X̃i −Xi,
and assume E(wi) = 0 and Var(wi) = σ2w.
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If the measurement errors wi is correlated with X̃i, then the regressor X̃i is correlated
with the new error term vi and β̂i will be biased and inconsistent The OLS estimator β̂1
is biased since E(vi|X̃i) 6= 0.

The precise size and direction of the bias in β̂1 depend on the correlation between X̃i and
the measurement error wi. This correlation depends, in turn, on the specific nature of the
measurement error.

The classical measurement error model

The classical measurement error model assumes that the errors are purely random so that
we assume Corr(wi, Xi) = 0 and Corr(wi, ui) = 0, but the errors are correlated with X̃i,
that is, Corr(X̃i, wi) 6= 0. Then, we can prove that in this model, the OLS estimator β̂1
of Equation (1) is inconsistent, and its the probability limit is

β̂1
p−−→

σ2X
σ2X + σ2w

β1 (2)

Since σ2
X

σ2
X+σ2

w
< 1, Equation (2) implies that β̂1 is biased toward 0.

• When σ2w is very large, then β̂1
p−−→ 0;

• When σ2w is very small, then β̂1
p−−→ β1.

Proof. Since X̃i = Xi + wi, we have Var(X̃i) = σ2X + σ2w.

According to Equation (2) and Cov(Xi, ui) = 0, we have

vi = β1(Xi − X̃i) + ui = −β1wi + ui

Cov(X̃i, wi) = Cov(Xi + wi, wi) = σ2w

Cov(X̃i, vi) = −β1Cov(X̃i, wi) + Cov(X̃i, ui) = −β1σ2w

Recall that in Chapter 6 for a simple regression model, when the error term is correlated
with the regressor, like Cov(X̃i, vi) 6= 0, then β̂1 has the probability limit

β̂1
p−−→ β1 +

Cov(X̃i, vi)

Var(X̃i)

for which the probability limit is just

β1 − β1
σ2w
σ2
X̃i

=
σ2X

σ2X + σ2w
β1
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Measurement error in Y

The effect of measurement error in Y is different from that in X. Generally, measurement
in Y that has conditional mean zero given the regressors will not induce bias in the OLS
coefficients.

• Suppose Y has the classical measurement error, that is, what we observe, Ỹi, is the
true value of Yi plus a purely random error wi. Then, the regression model is

Ỹi = β0 + β1 + vi, where vi = wi + ui

• If wi and Xi are independently distributed so that E(wi|Xi) = 0, in which case
E(vi|Xi) = 0, so β̂1 is unbiased.

• Since Var(vi) = Var(wi) + Var(ui) > Var(ui), the variance of β̂1 is larger than it
would be without measurement error.

Solutions to errors-in-variable bias

• Get an accurate measure of X as possible as you can.

• Use an instrumental variable that is correlated with the actual value of Xi but is
uncorrelated with the measurement error.

• Develop a mathematical model of the measurement error and use the resulting for-
mula to adjust the estimates. This requires specific knowledge of the errors.

3.4 Missing data and sample selection

Missing data are a common feature of economic data sets. Whether missing data pose a
threat to internal validity depends on why the data are missing. We consider three cases
of missing data.

Missing data at random

When data are missing completely at random, unrelated with X and Y , then the effect is
to reduce the sample size but not introduce any estimation bias.
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Missing data based on X

When the data are missing based on the value of a regressor but unrelated with generating
Y , the effect is also to reduce the sample size but not introduce bias. For example, we
repeat an experiment examining the influence of X on Y on several days and save the
results at different time. Suppose that time is a regressor, and we miss the all data from
1 pm to 2 pm. If the missing data do not affect the process of doing the experiment, then
the estimate of the causal effect of X on Y will still be unbiased.

Sample selection bias

When the data are missing because of a selection process that is related with the value
of the dependent variable Y , beyond depending on the regressors X, then this selection
process can introduce correlation between the error term and the regressors, resulting in
sample selection bias.

The sample selection problem can be cast either as a consequence of nonrandom sampling
or as a missing data problem, illustrated using the following two examples.

• Nonrandom sampling: Height of undergraduates

The professor of Statistics asks you to estimate the mean height of undergraduate
males. You collect your data (obtain your sample) by standing outside the basketball
team’s locker room and recording the height of the undergraduates who enter.

– Is this a good research design – will it yield an unbiased estimate of undergrad-
uate height?

– You have sampled individuals in a way that was related to the outcome Y
(height), resulting in bias.

• Missing data: Trade volume of pairs of countries

– The amount of commodities that two countries can trade depends on GDP of
two countries, industrial structures, factor abundance, etc.

– We can get the data on trade volume between pairs of countries from World
Bank, Penn World Table, etc.

– Using the data of observed trade volume between pairs of countries can lead
to sample selection bias because the sample selection process omit the pairs of
countries that do not trade with each other. But the fact that two countries do
not trade may also bear some economic meaning that can influence the causal
effect of the variables of interest on trade volume.
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• Solutions to sample selection bias

– Collect the sample in a way that avoids sample

– Randomized controlled experiment.

– Construct a model of the sample selection problem and estimate that model.

3.5 Simultaneous causality

Up to now, all we examined is how X can cause Y . What if Y causes X? If Y does
cause X in some way, there is simultaneous causality problem, which lead to biased
and inconsistent OLS estimator.

There are many examples of simultaneous causality in Economics. In the paper of Ace-
muglou et al.(2000), The Colonial Origins of Comparative Development: An Empirical
Investigation, the authors estimate the effect of institutions on economic performance.
However, the simultaneous causality (or mutual causality) comes from the fact that not
only do good institutions promote economic performance, but also countries with high
GDP per capita can afford good institutions and secure property rights, which in turn
yield better economic performance.

Simultaneous causality leads to biased estimates of the effect of X on Y , referred to
as simultaneous causality bias. We can express the simultaneous causality using a
simultaneous equations.

Yi = β0 + β1Xi + ui (3)

Xi = γ0 + γ1Yi + vi (4)

Intuitively, simultaneous causality comes from the following facts.

• Large ui means large Yi, which implies large Xi (if γ1 > 0).

• This implies that ui and Xi are correlated, i.e., Cov(Xi, ui) 6= 0.

• Thus, the OLS estimator of β1 from merely estimating Equation (3) is biased and
inconsistent.

Formally, we can prove that Cov(Xi, ui) 6= 0, resulting in the bias in the OLS estimator
of β1.
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Proof.

Cov(Xi, ui) = Cov(γ0 + γ1Yi + vi, ui)

= γ1Cov(Yi, ui) + Cov(vi, ui)( Assuming Cov(vi, ui) = 0)

= γ1Cov(β0 + β1Xi + ui, ui)

= γ1Cov(Xi, ui) + γ1σ
2
u

Solving for Cov(Xi, ui) yields the result Cov(Xi, ui) = γ1σ
2
u/(1−γ1β1), which is not equal

to zero unless γ1 = 0, i.e., the simultaneous causality does exist.

Solutions to simultaneous causality bias

1. Run a randomized controlled experiment. Because Xi is chosen at random by the
experimenter, there is no feedback from the outcome variable to Yi (assuming perfect
compliance).

2. Develop and estimate a complete model of both directions of causality. This is
the idea behind many large macro models (e.g. Federal Reserve Bank-US). This is
extremely difficult in practice.

3. Use instrumental variables regression to estimate the causal effect of interest (effect
of X on Y, ignoring effect of Y on X)

3.6 Sources of inconsistency of OLS standard errors

Inconsistent standard errors pose a different threat to internal validity. Even if the OLS
estimator is consistent and the sample is large, inconsistent standard errors will produce
hypothesis tests with size that differs from the desired significance level and "95%" confi-
dence intervals that fail to include the true value in 95% of repeated samples.

There are two main reasons for inconsistent standard errors: improperly handled het-
eroskedasticity and correlation of the error term across observations.

Heteroskedasticity

If the errors are heteroskedastic and you mistakenly use the homoskedasticity-only stan-
dard errors that are reported by some software by default, then the t-test and the F-test
based on the wrong standard errors do not have the desired size.

The solution to this problem is to use heteroskedasticity-robust standard errors of the OLS
estimators and to construct t- and F-statistics using a heteroskedasticity-robust variance
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estimator, which is provided as an option in modern software packages.

• The Breusch-Pagan test for heteroskedasticity

We can test whether heteroskedasticity exists in a regression model using the Breusch-
Pagan test. The test consist of the following steps:

1. Estimate a regression model, Y = β0 + β1X1 + · · ·+ βkXk + u, and obtain the
squared OLS residuals, û2.

2. Run a regression of û2 = δ0 + δ1X1 + · · ·+ δkXk + v, and obtain the R2 of this
regression, denoted as R2

û2 .

3. Test the null hypothesis, H0 : E(u2|X1, . . . , Xk) = σ2, i.e., homoskedasticity,
against the alternative hypothesis for heteroskedasticity. The test statistics can
be the overall F statistics for the regression in the second step, which is

F =
R2
û2/k

(1−R2
û2
)/(n− k − 1)

∼ F (k, n− k − 1)

Or we can compute an LM test statistics, which is

LM = nR2
û2 ∼ χ

2(k)

where n is the number of observations.

4. Based on the F-statistic or the LM statistic, compute the p-value. If the p-
value is smaller than the significance level, we can reject the null hypothesis of
homoskedasticity.

Correlation of the error term across observations

In the lease squares assumptions, we assume that (Xi, Yi) for i = 1, . . . , n are i.i.d.,
which implies that ui are uncorrelated across observations. However, in some setting,
the population regression error can be correlated across observations. There are mainly
two types of correlation in consideration: serial correlation and spatial correlation.

• Serial correlation arises from the repeated observations over the same entity over
time. It is a prevalent problem in time series data.

• Spatial correlation arises from the influence of contiguous (neighboring) observations
over geographic units.

• The OLS estimator with serial correlation or spatial correlation is still unbiased and
consistent, but inference based on no correlation assumption is not valid.

• Solution:
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– use the heteroskedasticity-and-auto-correlation-consistent standard er-
rors (HAC). We will learn how to handle serial correlation in time series data
in the next two semesters.

– Model the spatial correlation specifically. Spatial econometrics is a branch of
econometrics that deals with spatial correlation.
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