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1 Introduction

This document shows how to estimate nonlinear regression models. We will reproduce the
estimation results of the application of test scores in California elementary school districts in
Section 8.4 in the textbook.

The regression concerns the effect of class sizes represented by student-teacher ratios on test
scores. The goals of this regression are to answer the following research questions:

1. After controlling for differences in economic characteristics of different districts, does
the effect on test scores of reducing the student-teacher ratio depend on the fraction of
English learners?

2. Does this effect depend on the value of the student-teacher ratio?

2 Read data

We read the data file, which is caschool.dta.

library(AER)

# read data

library(foreign)

classdata <- read.dta("./data/caschool.dta")

The regression models in this application involve the dependent variable of test scores (TestScore),
and various independent variables, including the student-teacher ratio (STR), the percentage
of English learners (PctEL), the percentage of students eligible for subsidized lunch (PctLch),
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and average district income (Income). The corresponding variables in classdata are str,
el_pct, meal_pct, and avginc.

We first get basic descriptive statistics of these variables.

var2use <- c("testscr", "str", "el_pct", "meal_pct", "avginc")

df2use <- classdata[var2use]

sumdf <- summary(df2use)

Usually, we present these descriptive statistics in a table. We can use the function of
stargazer to generate Table 1.

varlabs <- c(

"Average test scores",

"Student-teacher ratio",

"Percent of English learners",

"Percent of students eligible for subsidized lunch",

"Average district income"

)

library(stargazer)

stargazer(df2use, title = "Descriptive Statistics of All Variables",

covariate.labels = varlabs,

summary.stat = c("max", "mean", "median", "min", "sd"),

digits = 2,

label = "tab:destab"

)

Table 1: Descriptive Statistics of All Variables

Statistic Max Mean Median Min St. Dev.

Average test scores 706.75 654.16 654.45 605.55 19.05
Student-teacher ratio 25.80 19.64 19.72 14.00 1.89
Percent of English learners 85.54 15.77 8.78 0.00 18.29
Percent of students eligible for subsidized lunch 100.00 44.71 41.75 0.00 27.12
Average district income 55.33 15.32 13.73 5.34 7.23

Finally, we can generate a scatterplot to visualize the relationship between test scores and
student-teacher ratios.

plot(testscr ~ str, data = df2use,
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main = "The scatterplot of test scores against student-teacher ratios",

xlab = "Student-teacher ratio", ylab = "Test scores",

bty = "l", col = "blue")

Figure 1: The scatterplot of test scores and student-teacher ratios

3 Regression models

We estimate seven regression models that appear in Table 8.3 in Chapter 8 of the textbook.
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Create a binary variable HiEL

Since some regressions in this table use the independent variable of HiEL that is a binary
variable for the districts with the percentage of English learners higher than 10%, we first
need to generate such variable.

hiel <- ifelse(df2use$el_pct > 10, TRUE, FALSE)

table(hiel)

FALSE 228
TRUE 192

We can see that there are 370 districts categorized as having high percentage of English
learners.

Set up regression models

We need to set up seven regression models as follows:

fm1 <- testscr ~ str + el_pct + meal_pct

fm2 <- testscr ~ str + el_pct + meal_pct + log(avginc)

fm3 <- testscr ~ hiel*str

fm4 <- testscr ~ hiel*str + meal_pct + log(avginc)

fm5 <- testscr ~ str + I(str^2) + I(str^3) + hiel + meal_pct + log(avginc)

fm6 <- testscr ~ hiel*str + hiel*I(str^2) + hiel*I(str^3) + meal_pct + log(avginc)

fm7 <- testscr ~ str + I(str^2) + I(str^3) + el_pct + meal_pct + log(avginc)

Since they are all linear with respect to the parameters, we can estimate them using OLS with
the function lm() one by one. However, writing the commands of lm() for each specification
is repetitive work, which is more easily done with a loop. Of course, we can use for loop to
do so, but R has a family of apply() functions that make running a loop much easier. Here
we use the lapply() function.

lapply() takes its first argument as a list object, and the second argument as the name of
a function that is imposed on each item in the list object, and the third or more arguments
as the other inputs for that function. Before using lapply, we use the mget() function to
generate a list object consisting of all formula specified above. Also, we define a function
of allols() that wraps the lm() function, using the default data set of df2use. Finally,
lapply() returns a list object consisting of all the lm objects estimated by the lm() function.

fm.ls <- mget(paste("fm", 1:7, sep = ""))
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allols <- function(x) lm(x, data = df2use)

ols.all <- lapply(fm.ls, allols)

We present all estimation results in Table 2 using the stargazer function. Since this function
reports the homoskedasticity-only standard errors of the coefficients by default, we need to
replace them with the heteroskedasticity-robust standard errors.

coef.all <- lapply(ols.all, coef)

hccm.all <- lapply(ols.all, vcovHC, type = "HC1")

seht.all <- lapply(hccm.all, function(x) sqrt(diag(x)))

indep.labels <- c("$STR$", "$STR^2$", "$STR^3$",

"Percent of English learner",

"High Percent of English learner",

"$HiEL \\times STR$", "$HiEL \\times STR^2$",

"$HiEL \\times STR^3$", "Percent of eligible for free lunch",

"Average district income")

stargazer(ols.all, title = "Nonlinear regression models of test scores",

coef = coef.all, se = seht.all,

covariate.labels = indep.labels,

dep.var.caption = "Dependent variable: Average test scores",

dep.var.labels.include = FALSE,

no.space = TRUE, df = FALSE,

order = c(2, 4, 5, 3, 1, 8, 9, 10, 6, 7, 11),

float.env = "sidewaystable",

label = "tab:tab83")

4 Discussion of the results

The research questions

Keep in mind that we have two research questions to answer:

1. Does this effect depend on the value of the student-teacher ratio?

2. After controlling for differences in economic characteristics of different districts, does
the effect on test scores of reducing the student-teacher ratio depend on the fraction of
English learners?
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The polynomial terms of STR

Regression models (5), (6), and (7) include the polynomial terms of STR. The t-statistics
for all these coefficients on STR, STR2, and STR3 are greater than the critical value of the
normal distribution at the 1% level. Thus, they are all statistically significant individually.

The joint zero hypotheses for STR2 and STR3 can be tested using the F-statistics for all the
three regression models.

testSTR23 <- function(ols.res, vcov.hc){

test <- linearHypothesis(ols.res, c("I(str^2) = 0", "I(str^3) = 0"),

vcov. = vcov.hc)

fstat <- test[2, 3]

pval <- test[2, 4]

return(list(Fstat = fstat, Pval = pval, Test = test))

}

F5 <- testSTR23(ols.all[[5]], hccm.all[[5]])

F6 <- testSTR23(ols.all[[6]], hccm.all[[6]])

F7 <- testSTR23(ols.all[[7]], hccm.all[[7]])

The F statistics and their corresponding p-values are

• Regression (5): The F-statistic is 6.17 with the p-value of 0.0023;

• Regression (6): The F-statistic is 5.81 with the p-value of 0.0033;

• Regression (7): The F-statistic is 5.96 with the p-value of 0.0028.

Therefore, the joint zero hypotheses are rejected for all three models at the 1% level. That
means that there is nonlinear effect of STR on test scores.

The simplest way to interpret the nonlinear effect of STR on test scores is by plotting the
estimated regression lines. To generate the estimated regression lines, we need to get the
predicted values of test scores based on a range of the values of STR, holding other variable
constant. Except for STR, we let all the continuous variables take their average values and
let HiEL be one. STR takes the values from its minimum value to its maximum value, with
a step of 0.05.

The following codes get the predicted values of test scores and draw the regression lines.

str.sim <- with(df2use, seq(min(str), max(str), by = 0.05))

n.sim <- length(str.sim)
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means <- lapply(df2use, mean)

means$hiel <- ifelse(mean(hiel) > 0.5, TRUE, FALSE)

newdf <- data.frame(str = str.sim,

el_pct = rep(means$el_pct, n.sim),

meal_pct = rep(means$meal_pct, n.sim),

avginc = rep(means$avginc, n.sim),

hiel = rep(means$hiel, n.sim))

yhat.2 <- predict(ols.all[[2]], newdata = newdf)

yhat.5 <- predict(ols.all[[5]], newdata = newdf)

yhat.7 <- predict(ols.all[[7]], newdata = newdf)

plot(testscr ~ str, data = df2use,

xlab = "Student-teacher ratio", ylab = "Test scores",

bty = "l", col = "gray")

lines(yhat.2 ~ str.sim, col = "black", lwd = 1.5)

lines(yhat.5 ~ str.sim, col = "red", lwd = 1.5)

lines(yhat.7 ~ str.sim, col = "blue", lty = 2, lwd = 1.5)

legend("topright", c("Linear regression (2)",

"Cubic regression (5)",

"Cubic regression (7)"),

col = c("black", "red", "blue"),

lty = c(1, 1, 2))

The interaction between STR and HiEL

Regression models (3), (4), and (6) include the interaction terms of STR and HiEL. Regres-
sions (3) and (4) only have the interaction term of HiEL and STR, which is neither significant
at the 10% level, while Regression (6) has the interaction terms of HiEL and STR, STR2,
and STR3, which are individually significant at the 5% level. The joint hypothesis of all the
interaction terms having zero coefficients can be tested as follows

F6.inter <- linearHypothesis(ols.all[[6]],

c("hielTRUE:str=0", "hielTRUE:I(str^2)=0",

"hielTRUE:I(str^3)=0"), vcov. = hccm.all[[6]])

The F-statistic is 2.69 with the p-value of 0.046 so that the coefficients on the three inter-
action terms are jointly significant at the 5% level but insignificant at the 1% level.
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Figure 2: Three regression lines relating test scores and student-teacher ratios
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Also, we can plot the regression lines in Regression (6) for HiEL = 1 and HiEL = 0.

# plot Figure 8.11

df2use.a <- df2use[hiel, ]

df2use.b <- df2use[!hiel, ]

newdf$hiel <- TRUE

yhat.6.T <- predict(ols.all[[6]], newdata = newdf)

newdf$hiel <- FALSE

yhat.6.F <- predict(ols.all[[6]], newdata = newdf)

plot(testscr ~ str, data = df2use.a,

xlab = "Student-teacher ratio", ylab = "Test scores",

bty = "l", col = "gray")

points(testscr ~ str, data = df2use.b, col = "orange")

lines(yhat.6.T ~ str.sim, col = "blue", lwd = 1.5)

lines(yhat.6.F ~ str.sim, col = "red", lwd = 1.5, lty = 2)

legend("topright", legend = c("High EL", "Low EL"),

pch = c(1, 1), col = c("gray", "orange"))

legend(18, 615, legend = c("Regression with HiEL=1",

"Regression with HiEL = 0"),

col = c("blue", "red"), lty = c(1, 2))

Conclusion

5 Appendix: R codes

# read the data files into R

# read the dta file

library(AER)

library(foreign)

classdata <- read.dta("./data/caschool.dta")

# extract variables used in regression models

var2use <- c("testscr", "str", "el_pct", "meal_pct", "avginc")
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Figure 3: The regression lines for districts with high and low percentage of English learners
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df2use <- classdata[var2use]

## descriptive statistics

sumdf <- summary(df2use)

varlabs <- c(

"Average test scores",

"Student-teacher ratio",

"Percent of English learners",

"Percent eligible for subsidized lunch",

"Average district income"

)

library(stargazer)

stargazer(df2use, title = "Descriptive Statistics of All Variables",

covariate.labels = varlabs,

summary.stat = c("max", "mean", "median", "min", "sd"),

digits = 2,

label = "tab:destab"

)

plot(testscr ~ str, data = df2use,

main = "The scatterplot of test scores against student-teacher ratios",

xlab = "Student-teacher ratio", ylab = "Test scores",

bty = "l", col = "blue")

## regressions

hiel <- ifelse(df2use$el_pct > 10, TRUE, FALSE)

table(hiel)

fm1 <- testscr ~ str + el_pct + meal_pct

fm2 <- testscr ~ str + el_pct + meal_pct + log(avginc)

fm3 <- testscr ~ str + hiel + hiel:str

fm4 <- testscr ~ str + hiel + hiel:str + meal_pct + log(avginc)

fm5 <- testscr ~ str + I(str^2) + I(str^3) + hiel + meal_pct + log(avginc)

fm6 <- testscr ~ hiel*str + hiel*I(str^2) + hiel*I(str^3) + meal_pct + log(avginc)

fm7 <- testscr ~ str + I(str^2) + I(str^3) + el_pct + meal_pct + log(avginc)
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fm.ls <- mget(paste("fm", 1:7, sep = ""))

allols <- function(x) lm(x, data = df2use)

ols.all <- lapply(fm.ls, allols)

coef.all <- lapply(ols.all, coef)

hccm.all <- lapply(ols.all, vcovHC, type = "HC1")

seht.all <- lapply(hccm.all, function(x) sqrt(diag(x)))

indep.labels <- c("$STR$", "$STR^2$", "$STR^3$",

"Percent of English learner",

"High Percent of English learner",

"$HiEL \\times STR$", "$HiEL \\times STR^2$",

"$HiEL \\times STR^3$", "Percent of eligible for free lunch",

"Average district income")

stargazer(ols.all, title = "Nonlinear regression models of test scores",

coef = coef.all, se = seht.all,

covariate.labels = indep.labels,

dep.var.caption = "Dependent variable: Average test scores",

dep.var.labels.include = FALSE,

no.space = TRUE, df = FALSE,

order = c(2, 4, 5, 3, 1, 8, 9, 10, 6, 7, 11),

label = "tab:tab83")

# Hypothesis tests

# STR^2 and STR^3

testSTR23 <- function(ols.res, vcov.hc){

test <- linearHypothesis(ols.res, c("I(str^2) = 0", "I(str^3) = 0"),

vcov. = vcov.hc)

fstat <- test[2, 3]

pval <- test[2, 4]

return(list(Fstat = fstat, Pval = pval, Test = test))

}
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F5 <- testSTR23(ols.all[[5]], hccm.all[[5]])

F6 <- testSTR23(ols.all[[6]], hccm.all[[6]])

F7 <- testSTR23(ols.all[[7]], hccm.all[[7]])

# plotting

# Plot Figure 8.10

str.sim <- with(df2use, seq(min(str), max(str), by = 0.05))

n.sim <- length(str.sim)

means <- lapply(df2use, mean)

means$hiel <- ifelse(mean(hiel) > 0.5, TRUE, FALSE)

newdf <- data.frame(str = str.sim,

el_pct = rep(means$el_pct, n.sim),

meal_pct = rep(means$meal_pct, n.sim),

avginc = rep(means$avginc, n.sim),

hiel = rep(means$hiel, n.sim))

yhat.2 <- predict(ols.all[[2]], newdata = newdf)

yhat.5 <- predict(ols.all[[5]], newdata = newdf)

yhat.7 <- predict(ols.all[[7]], newdata = newdf)

F6.inter <- linearHypothesis(ols.all[[6]],

c("hielTRUE:str=0", "hielTRUE:I(str^2)=0",

"hielTRUE:I(str^3)=0"), vcov. = hccm.all[[6]])

plot(testscr ~ str, data = df2use,

xlab = "Student-teacher ratio", ylab = "Test scores",

bty = "l", col = "gray")

lines(yhat.2 ~ str.sim, col = "black", lwd = 1.5)

lines(yhat.5 ~ str.sim, col = "red", lwd = 1.5)

lines(yhat.7 ~ str.sim, col = "blue", lty = 2, lwd = 1.5)

legend("topright", c("Linear regression (2)",

"Cubic regression (5)",

"Cubic regression (7)"),

col = c("black", "red", "blue"),

lty = c(1, 1, 2))

# plot Figure 8.11
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df2use.a <- df2use[hiel, ]

df2use.b <- df2use[!hiel, ]

newdf$hiel <- TRUE

yhat.6.T <- predict(ols.all[[6]], newdata = newdf)

newdf$hiel <- FALSE

yhat.6.F <- predict(ols.all[[6]], newdata = newdf)

plot(testscr ~ str, data = df2use.a,

xlab = "Student-teacher ratio", ylab = "Test scores",

bty = "l", col = "gray")

points(testscr ~ str, data = df2use.b, col = "orange")

lines(yhat.6.T ~ str.sim, col = "blue", lwd = 1.5)

lines(yhat.6.F ~ str.sim, col = "red", lwd = 1.5, lty = 2)

legend("topright", legend = c("High EL", "Low EL"),

pch = c(1, 1), col = c("gray", "orange"))

legend(18, 615, legend = c("Regression with HiEL=1",

"Regression with HiEL = 0"),

col = c("blue", "red"), lty = c(1, 2))
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