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1 The Essence of the OLS Estimation

Multiple regression model involves the models as follows

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + ui, i = 1, . . . , n (1)

Or in matrix notation
Y = Xβ + u (2)

1.1 The OLS estimation

The OLS estimator is the solution to the minimization problem that minimizes the sum of squared
prediction mistakes (residuals)

Minimize
bi,i=0,...,k

n∑
i=1

û2
i =

n∑
i=1

(Yi − b0 − b1X1i − · · · − bkXki)
2 (3)

When k = 2

β̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
(4)

β̂0 = Ȳ − β̂1X̄ (5)

In general

β̂ = (X′X)−1X′Y (6)

1.2 Measures of fit

SER

SER = sû, where s2û =
1

n− k − 1

n∑
i=1

û2
i =

û′û

n− k − 1
=

SSR

n− k − 1
(7)
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R2

• The total sum of squares (TSS): TSS =
∑n

i=1(Yi − Ȳ )2

• The explained sum of squares (ESS): ESS =
∑n

i=1(Ŷi − Ȳ )2

• The sum of squared residuals (SSR): SSR =
∑n

i=1 û
2
i

• An important equality is TSS = ESS + SSR, which holds only when we use the OLS estimation.

R2 =
ESS

TSS
= 1− SSR

TSS
(8)

The Adjusted R2

R̄2 = 1− n− 1

n− k − 1

SSR

TSS
= 1− s2u

s2Y
(9)

• What is the purpose of designing the adjusted R2?

It is to alleviate the problem of R2 that when a new regressor is added, as long as its coefficient is
not zero, R2 will always increase, regardless of whether the new regressor is a determinant of Y .

The limitation of R2 and R̄2

• A high R2 or R̄2 does not mean that you have eliminated omitted variable bias.

• A high R2 or R̄2 does not mean that you have an unbiased estimator of a causal effect (β1).

• A high R2 or R̄2 does not mean that the included variables are statistically significant. This must
be determined using hypotheses tests.

1.3 The least squares assumptions

• Assumption #1: E(ui|Xi) = 0

• Assumption #2: (Yi,X
′
i) i = 1, . . . , n are i.i.d.

• Assumption #3: Large outliers are unlikely, i.e.„ 0 < E(X4) < ∞ and 0 < E(Y4) < ∞

• Assumption #4: No perfect multicollinearity

1.4 Sampling distributions of the OLS estimators

Unbiasedness:

E(β̂) = β

Consistency:

plimn→∞ β̂ = β
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Efficiency:

The Gauss-Markov theorem ensures that the OLS is the BLUE under the least squares assumptions plus
the homoskedasticity assumption.

The asymptotic normal distribution:

β̂
d−−→ N(β,Σβ̂) (10)

where Σβ̂ = Var(β̂|X) for which use Equation (11) for the homoskedastic case and Equation (12) for
the heteroskedastic case.

Var(β̂|X) = σ2
u(X

′X)−1 (11)

Varh(β̂|X) = (X′X)
−1

Σ(X′X)−1 (12)

2 Hypothesis Test Concerning the Coefficients in Multiple Re-

gression Models

2.1 The t test

A single hypothesis test

• Two sided:
H0 : βj = βj,0 vs. H1 : βj ̸= βj,0

• One sided:
H0 : βj = βj,0 vs. H1 : βj < βj,0

The t statistics

t =
β̂j − βj,0

SE(β̂j)

where SE(β̂j) is the heteroskedasticity-robust standard error of β̂j .

The confidence interval [
β̂j − 1.96SE(β̂j), β̂j + 1.96SE(β̂j)

]

2.2 The F test

A joint hypothesis: linear and involving more than one coefficients

H0 : β1 = β1,0, . . . , βq = βq,0 vs. H1 : at least one restriction does not hold (13)
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H0 : β1 = β2 vs. H1 : β1 ≠ β2 (14)

or
H0 : β1 + β2 = 1 vs. H1 : β1 + β2 ̸= 1 (15)

or more generally,

H0 : β1 + β2 = 0, 2β2 + 4β3 + β4 = 3 vs. H1 : at least one restriction does not hold (16)

H0 : Rβ = r vs. H1 : Rβ ̸= r (17)

The F-statistic

F =
1

q
(Rβ̂ − r)′

[
RV̂ar(β̂)R′

]−1

(Rβ̂ − r) (18)

• The F distribution: F
a∼ F (q,∞)

• The homoskedasticity-only F statistic

F =
(SSRrestrict − SSRunrestrict)/q

SSRunrestrict/(n− k − 1)
=

(R2
unrestrict −R2

restrict)/q

(1−R2
unrestrict)/(n− k − 1)

∼ F (q, n− k − 1) (19)

The confidence set

A 95% confidence set for two or more coefficients is

• a set that contains the true population values of these coefficients in 95% of randomly drawn
samples.

• an ellipse containing the pairs of values of β1 and β2 that cannot be rejected using the F-statistic
at the 5% significance level

• {β1, β2 : Fβ1,β2 < cF }, where cF is the 5% critical value of the F (2,∞)

3 Nonlinear regression models

3.1 A general nonlinear model

A general nonlinear regression model is

Yi = f(Xi;θ) + ui (20)

The effect of Y of a change in X can be computed as

∆Y = f(X1 +∆X1, X2, . . . , Xk;θ)− f(X1, X2, . . . , Xk;θ) (21)
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3.2 Polynomials

A polynomial regression model of degree r

Yi = β0 + β1Xi + β2X
2
i + · · ·+ βrX

r
i + ui (22)

Testing the null hypothesis that the population regression function is linear

H0 : β2 = 0, β3 = 0, ..., βr = 0 vs. H1 : at least one βj ̸= 0, j = 2, . . . , r

• Use F statistic to test this joint hypothesis. The number of restriction is q = r − 1.

3.3 Logarithms

Case I: linear-log model

Yi = β0 + β1 ln(Xi) + ui, i = 1, . . . , n (23)

• a 1% change in X is associated with a change in Y of 0.01β1.

Case II: log-linear model

ln(Yi) = β0 + β1Xi + ui (24)

• a one-unit change in X is associated with a 100× β1% change in Y

Case III: log-log model

ln(Yi) = β0 + β1 ln(Xi) (25)

• 1% change in X is associated with a β1% change in Y because

3.4 Interactions between independent variables

Interaction between two binary variables

Yi = β0 + β1D1i + β2D2i + β3(D1i ×D2i) + ui (26)

Interactions between a continuous and a binary variable

• Different intercept, same slope.

Yi = β0 + β1Xi + β2Di + ui (27)

• Different intercepts and different slopes.

Yi = β0 + β1Xi + β2Di + β3(Xi ×Di) + ui (28)
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• Different intercepts and same intercept.

Yi = β0 + β1Xi + β2(Xi ×Di) + ui (29)

Interactions between two continuous variables

Yi = β0 + β1X1i + β2X2i + β3(X1i ×X2i) + ui (30)

4 Assessing regression analysis

4.1 Internal and external validity

Internal validity

The statistical inferences about causal effects are valid for the population being studied.

Internal validity consists of two components

• The estimator of the causal effect should be unbiased and consistent.

• Hypothesis tests should have the desired significance level (the actual rejection rate of the test
under the null hypothesis should equal its desired significance level), and the confidence intervals
should have the desired confidence level.

External validity

The statistical inferences can be generalized from the population and setting studied to other populations
and settings, where the setting refers to the legal, policy, and physical environment and related salient
features.

4.2 Threats to external validity

Differences in populations

Differences in settings

4.3 Threats to internal validity of multiple regression analysis

The five main threats

• Omitted variable bias

• Wrong functional form

• Errors-in-variables bias

6



• Sample selection bias

• Simultaneous causality bias

All of these imply that E(ui|X1i, , Xki) ̸= 0 in which case OLS is biased and inconsistent.

Omitted variable bias

• The definition of omitted variable bias

Omitted variable bias is the bias in the OLS esitmator that arises when the included regressors,
X, are correlated with omitted variables, Z.

• Solutions to omitted variable bias

– When the omitted variables are observed, include them or control variables that are measur-
able.

– When the omitted variable are not observed

∗ Panel data model

∗ Instrumental variables method

∗ Randomized controlled experiment

Misspecification of functional form

We consider functional form misspecification as a type of omitted variable bias, that is, we omit the
appropriate nonlinear terms in the regression model.

Measurement error and errors-in-variable bias

Yi = β0 + β1X̃i + [β1(Xi − X̃i) + ui]

= β0 + β1X̃i + vi
(31)

• The classical measurement error model

X̃i = Xi + wi, where Corr(wi, Xi) = 0 and Corr(wi, ui) = 0 (32)

It follows that Corr(wi, X̃i) ̸= 0.

With the classical measurement error model, the OLS estimator β̂1 of Equation (31) has the
probability limit

β̂1
p−−→ σ2

X

σ2
X + σ2

w

β1 (33)

β̂1 is an inconsistent estimator of β1.

• Solutions

– Instrumental variables method

– Modeling the measurement errors directly, and adjusting the OLS estimation accordingly
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Missing data and sample selection

• Missing data at random

Data are missing for purely random reasons. The OLS estimator is unbiased.

• Missing data based on X

Data are missing based on X but unrelated with the data generating process of Y . The OLS
estimator is unbiased.

• Sample selection bias

The sample selection process affect the value of the dependent variable Y and the regressors X.
The OLS estimator is biased.

• Solutions to sample selection bias

– Collect the sample in a way that avoids sample.

– Heckman’s two-step method.

– Randomized controlled experiment.

– Construct a model of the sample selection problem and estimate that model.

Simultaneous causality

Yi = β0 + β1Xi + ui

Xi = γ0 + γ1Yi + vi

• Solutions to simultaneous causality bias

1. Randomized controlled experiment

2. Simultaneous equation estimation

3. Instrumental variables
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