
Answers for Homework #3

Zheng Tian

5.5 A regression of TestScore on SmallClass yields

̂TestScore = 918.0
(1.6)

+ 13.9
(2.5)
× SmallClass, R2 = 0.01, SER = 74.6.

a. The estimated gain from being in a small class is 13.9 points. This is equal to
approximately 1/5 of the standard deviation in test scores, a moderate increase.

b. The t-statistic is tact = 13.9/2.5 = 5.56, which has a p-value of 0.00. Thus the
null hypothesis is rejected at the 5% and 1% levels.

c 13.9± 2.58× 2.5 = 13.9± 6.45.

5.6 a. The question asks whether the variability in test scores in large classes is the same
as the variability in small classes. It is hard to say. On the one hand, teachers in
small classes might able so spend more time bringing all of the students along,
reducing the poor performance of particularly unprepared students. On the
other hand, most of the variability in test scores might be beyond the control
of the teacher.

b. The formula in Equation (5.3) is valid heteroskesdasticity or homoskedasticity;
thus inferences are valid in either case.

5.8 a. Since ui ∼ N(0, σ2u) and the sample size is small, we use the Student-t distribution
for the t-statistic. The 5% critical value for a two-sided test from a Student-
t distribution with the degrees of freedom of 28 is 2.05. Therefore, the 95%
con�dence interval for β0 is 43.2± 2.05× 10.2 = 43.2± 20.91.

b. The t-statistic is tact = (61.5 − 55)/7.4 = 0.88, which is less (in absolute value)
than the critical value of 20.5. Thus, the null hypothesis is not rejected at the
5% level.

c. The one sided 5% critical value is 1.70; tact is less than this critical value, so that
the null hypothesis is not rejected at the 5% level.

5.10 Let n0 denote the number of observations with X = 0 and n0 denote the number
of observations with X = 1. So the total number of observations n = n1 + n2.
Then de�ne the proportion in all observations of X = 1 as α = n1

n and the rest is
1− α = n0

n .
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1. Calculate X̄ and Ȳ

X̄ =
1

n

n∑
i=1

Xi =
1

n

 n1∑
i:Xi=1

Xi +

n0∑
i:Xi=0

Xi

 =
n1
n

= α

Ȳ =
1

n

n∑
i=1

Yi =
1

n

 n1∑
i:Xi=1

Yi +

n0∑
i:Xi=0

Yi

 =
1

n
(n1Ȳ1 + n0Ȳ0) = αȲ1 + (1− α)Ȳ0

2. Show β̂1 = Ȳ1 − Ȳ0

β̂1 =

∑
i(Xi − X̄)(Yi − Ȳ )∑

i(Xi − X̄)2

=

∑
iXi(Yi − Ȳ )−

∑
i X̄(Yi − Ȳ )∑

iXi(Xi − X̄)−
∑

i X̄(Xi − X̄)

=

∑
iXi(Yi − Ȳ )∑
iXi(Xi − X̄)

=

∑
i:Xi=1(Yi − Ȳ )∑
i:Xi=1(Xi − X̄)

=
n1Ȳ1 − n1Ȳ
n1 − n1X̄

=
Ȳ1 − Ȳ
1− X̄

Then, we have

(1− X̄)β̂1 = Ȳ1 − Ȳ
(1− α)β̂1 = Ȳ1 − αȲ1 − (1− α)Ȳ0

β̂1 = Ȳ1 − Ȳ0

3. Show that β̂0 = Ȳ0 and β̂0 + β̂1 = Ȳ1

Since Ȳ = β̂0 + β̂1X̄, we have

αȲ1 + (1− α)Ȳ0 = β̂0 + αβ̂1

αȲ1 + (1− α)Ȳ0 = β̂0 + α(Ȳ1 − Ȳ0)
β̂0 = Ȳ0

β̂0 + β̂1 = Ȳ1

5.14

a. The least squares estimator of the model of Yi = βXi + ui is the solution to the
minimization problem of

min
b

∑
i

(Yi − bXi)
2
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The �rst order condition is

−2
∑
i

Xi(Yi − bXi) = 0

From this equation, we get the OLS estimator of β as

β̂ =

∑
iXiYi∑
iX

2
i

β̂1 is a linear function of Y1, . . . , Yn since we can write it as

β̂ =
∑
i

αiYi, where αi =
Xi∑
iX

2
i

b. From one of the Gauss-Markov conditions, E(ui|X) = 0 whereX = (X1, . . . , Xn),
we can derive the unbiasedness of β̂ as follows.

β̂ =

∑
iXi(βXi + ui)∑

iX
2
i

= β +

∑
iXiui∑
iX

2
i

E[(β̂ − β)|X] =

∑
iXiE(ui|X)∑

iX
2
i

= 0

E(β̂) = β

c. From the Gauss-Markov condition, var(ui|X) = σ2u and E(uiuj |X) = 0, we can

derive the conditional variance of β̂ as follows.

var(β̂|X) = var((β̂ − β)|X) = E((β̂ − β)2|X)

= E

[
(
∑

iXiui)
2

(
∑

iX
2
i )2
|X
]

=
E(
∑

i

∑
j uiujXiXj |X)

(
∑

iX
2
i )2

=

∑
iE(u2iX

2
i |X)

(
∑

iX
2
i )2

=
σ2u
∑

iX
2
i

(
∑

iX
2
i )2

=
σ2u∑
iX

2
i

d. Let β̃ =
∑

i aiYi be any unbiased linear estimator of β. Then

β̃ =
∑
i

ai(βXi + ui) = (
∑
i

aiXi)β +
∑
i

aiui

For β̃ being unbiased, we must have
∑

i aiXi = 1. Since the OLS estimator β̂ is
also an unbiased linear estimator, it must satisfy

∑
i αiXi = 1. And we can also

write ai = αi+di where di can be any number, re�ecting the di�erence between
ai and αi. To show that β̂ is BLUE, that is, it has the smallest conditional
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variance, we need to derive the conditional variance of β̃.

var(β̃|X) = E

[
(
∑
i

aiui)
2|X

]
= E

[∑
i

a2iu
2
i

]
= σ2u(

∑
i

a2i )

= σ2u(
∑
i

(αi + di)
2) = σ2u(

∑
i

α2
i + 2

∑
i

αidi +
∑
i

d2i )

= var(β̂|X) + 2σ2u
∑
i

αidi + σ2u
∑
i

d2i

where ∑
i

αidi =

∑
iXidi∑
iX

2
i

=

∑
iXi(ai − αi)∑

iX
2
i

= 0

Therefore
var(β̃|X)− var(β̂|X) = σ2u

∑
i

d2i ≥ 0

Finally, we conclude that var(β̃|X) ≥ var(β̂|X) and the equality holds only
when β̃ = β̂.
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