Lecture 3: The GARCH Model }

Zheng Tian
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The problem of ARCH models

The principle of parsimony

o Merriam-Webster:
© the quality of being careful with money or resources
@ the quality or state of being stingy

@ Econometric modeling

e Use a concise model specification
o Object to overparameterization

The problem of ARCH model
o Estimate so many parameters to fully capture higher-order autoregressive
relationship in a2.

@ Think of how many parameters in an ARCH(m) model?
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What is the GARCH Model?

The GARCH model
Generalized ARCH model

@ Bollerslev (1986) proposes an extension of ARCH, known as the Generalized
ARCH (GARCH) model.

@ A high-order ARCH model may have a more parsimonious GARCH
representation.

The mean equation

re = pe + a¢
where

@ i; is modeled with an appropriate regression model or some ARMA
specification.

@ a; is the innovation at time t.

The volatility equation

02 = Var(a?|F:_1)
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The GARCH(m, s) model

m S
2 2 2
ar=0ver, 07 = o+ »_aiai_ i+ Y Bior (1)
i=1 j=1
where

@ ¢; ~i.i.d.(0,1) is a white noise process
@ o >0, aj > 0 (at least one o; >0), 5; >0
° Z;ialx(m’s)(a,- + B3;) <1, in which a; =0 for i > mand 3; =0 for j > s.
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ARCH and GARCH model

When g; =0forall j=1,...,s

GARCH(m, s) = ARCH(m)

GARCH v.s. ARCH and AR v.s. ARMA

@ An ARCH model can be considered as an AR process of a2.
e A GARCH model can be considered as an ARMA process of a2.

@ That is why we can write a higher-order ARCH(m) process with a
parsimonious GARCH(1, 1) process.

o What is the AR representation of ARMA?
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ARMA representation of GARCH

o Let ny =a? — o2

e E(n:) =0, Cov(ne,me—i) = 0 for i > 1, but usually n; is not i.i.d.
@ A GARCH(m, s) model can be written as

max(m,s)

=ap + Z o+ /Bl)at i+ — Zﬁjﬁt—_/

i=1

which can be regarded as an ARMA form for the squared series a2.

o For stationarity of a2, we must require that the characteristic roots of the
above ARMA representation lie within the unit circle.
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The Properties of GARCH(1, 1)

Consider a GARCH(1, 1)

2 2 2
o = ao+aar g+ fiop

where
ag>0,0<a; <1,0< 5, <1, anda1+61<1

The mean of a;
@ The unconditional mean: E(a;) = E(ot€;) = E(0+)E(er) =

0
@ The conditional mean: E;_1(a;) = 01Ei—1(er) = 01E(e:) =0
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Properties of GARCH(1, 1)

The variance of ¢;

The conditional variance

2 2 2 2
Ei—1(a}) = 0t = a0 + a1ai_y + P10ty

The unconditional variance

Oz? = 6%(@0 + 01104%,1 + ﬁmf,l)
=E(a7) = E(&7) [ao + nE(a7_1) + BrE(o7_y)]

=E(a?) = a0+ (o1 + f1)E(a}_;)
Let E(a?) = E(a?_;). We have

g
l—o1—p

For the variance must be positive, we require a3 + 81 < 1.

E(af) =
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Properties of GARCH(1, 1)

The variance of ¢; (cont'd)

From the ARMA representation of a GARCH(m, s) model

max(m,s) s
af =qp + Z (i + 6i)3%_i + N — Zﬂjnt—f'
i=1 j=1

we can also derive the unconditional variance of a stationary a? series is

o

1- ™) (o 4 8)

E(af) =

max(m,s)

in which we must require > m 7" (a; + ;) < 1.
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Properties of GARCH(1, 1)

The autocorrelation and kurtosis

The autocorrelation function

E(atat_[) = E(O'tftat_jﬁt_[) =0

The kurtosis
Assume that €; ~ N(0,1). Given that 1 — (o + $1)? —2a2 > 0, the kurtosis of a;
is
3[1 — (a1 + £1)?]
1-— (041 + ,61)2 — 20[%

That is, the tail distribution of a GARCH(1, 1) process is heavier than that of a
normal distribution.

>3
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Properties of GARCH(1, 1)

Volatility persistence

The roles of a3 and 37 in volatility persistence are different

@ The larger is ay, the larger is the response of o2 to new information.
2
A shock of €; — a; — 07 4
@ The larger is (31, the more persistence is the conditional variance.

2 2
A shock of €, = a; = 071 — 071
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Volatility persistence

Consider two GARCH(1, 1) models
02 =1+0.6a> ; +0202 |
02=1+0.2a% , +0.602
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Estimation and forecasting

Maximum likelihood estimation

The conditional log-likelihood function is similar to that of ARCH model

v, Blar, ... a7 i[—ln(%r —1|n(at) ;ﬂ 2)

t=1

The difference is that now o2 is a GARCH model

m S
2 2 2
oy =ao+ E aja;_; + § Biot_j
i—1 =
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Estimation and forecasting

Check model adequacy

Compute the standardized residuals

Check the mean equation
Use the Ljung-Box statistic for {3;}.

Check the volatility equation
Use the Ljung-Box statistic for {3;}.
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Model diagnosis

Goodness of fit

@ SSR. Since ¢; = a?/02, we can compute SSR as

L
SSR = -+
Z 6?
=1
@ The log-likelihood function.
T §2
2= {m(&f) + ;} — Tln(27)
t

Information criteria
e AIC = —-2(+2n
@ BIC=-20+nlIn(T)
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Estimation and forecasting

Forecasting

1-step-ahead forecast

on(l) = ao + a1 a; + pro?

2-step-ahead forecast

2 2 2
Ohya = Q0 + @13hy1 + P10k

=ag+ (a1 + 51)0§+1 + 0410%+1(5%+1 -

Given that E(e?,; — 1|Fy) = 0, the 2-step-ahead forecast is

02(2) = ag + (a1 + f1)o2(1)

1)
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Forecasting (cont'd)

The /-step-ahead forecast

o7 (0) = ap + (o1 + Br)or(t — 1), for £> 1

As { — oo

[1— (a1 + B1) 1]

o
() = l—a1 -5

+ (a1 + 1) top(1)

Therefore,
(67]

— = asl— oo
l—o1—p

a?(l) —

provided that a; + 51 < 1.
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